
PS #4

Astron 400 Problem Set 4

Given: Sep 29. Due: Thursday, Oct 13 at the beginning of class

Homework Policy: You can consult class notes and books. Always try to solve the
problems yourself; if you cannot make progress after some effort, you can discuss with your
classmates or ask the instructor. However, you cannot copy other’s work: what you turn in
must be your own. Make sure you are clear about the process you use to solve the problems:
partial credit will be awarded.

Reading: Phillips Chapter 3, 4

Problem 1 Mass-Luminosity Relations: Theoretical

The gas pressure Pg dominates over radiation pressure Pr for stars with M < 30M�. Free-
free Kramer’s opacity κff dominates over electron scattering κes when M < 5M�.

Start with the ideal gas law and the definition of radiation pressure. Use hydrostatic
equilibrium and the equation for radiative energy transport. Show that luminosity L and
mass M have the following approximate scaling relations:

a. For low-mass stars with� 5M� (so free-free opacity and gas pressure dominate), show
L ∝M5 (this ignores convection, which can be important in low-mass stars).

b. For intermediate masses 5−30M� (so gas pressure and electron scattering dominate),
show L ∝M3.

c. For high masses � 30M� (radiation pressure and electron scattering), show L ∝M

Problem 2 Neutron Star Crust

The outer layer of a neutron star consists of 56Fe ions embedded in a sea of electrons. [It is
convenient to remember that 1 eV = 1.16× 104 K, ~c = 197.3 MeV fm.]

a. What is the electron fraction Ye ≡ ne/nb, where nb is the baryon number density
nb = ρ/mp? [Baryons are protons and neutrons, and you can ignore the difference
between proton and neutron masses].
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b. Show that the electron Fermi momentum pF is given by:

pF c = 1.11(Yeρ10)
1/3 MeV

where ρ10 = ρ/(1010 kg m−3). At what density ρ = ρr do the electrons start to become
relativistic?

c. Sometimes it is convenient to define a “Fermi Temperature”, TF = EF/kB. Physically,
TF is the temperature below which electrons are degenerate. Plot TF as a function of
ρ for the density range 103 − 1010 kg m−3.

d. What is the Fermi energy for the ions as a function of density, over the same range
as part (c)? Think about this a bit: what type of particle are the ions, bosons or
fermions? What statistics do they obey?

Problem 3 Electron-Positron Creation

At high temperatures, photons can convert to electron-positron pairs and an equilibrium is
established:

γ + γ ↔ e+ + e−

Recall that photons always have 0 chemical potential.

a. For T � mec
2/kB, we can treat the electrons and positrons as non-relativistic particles.

Since the pair density is rather low, the pairs are very non-degenerate. Show that in
equilibrium:

n−n+ = 4

(
mekBT

2π~2

)3

e−2mec2/kBT

where n+ and n− are the number densities of positrons and electrons, respectively.

b. In general, n− 6= n+ because the medium may also contain ions, and charge neutrality
requires n− = n+ + Zni (Z is the ion charge and ni the ion number density). As
T increases, the density of electrons from pair production becomes much larger than
the density of electrons associated with ions, and then we have n− = n+ to a good
approximation. Argue that in this case µ(e+) = µ(e−) = 0.

c. When T � mec
2/kB ≈ 6×109 K the electrons and positrons are extremely relativistic.

Show that

n+ = n− =
1

π2

(
kBT

h̄c

)3 ∫ ∞
0

dx
x2

ex + 1

To do this, go back to Eqn. 2.18 for the number of particles in a gas with energy εp
and temperature T . Use this to get an expression for the number density, and then
assume kBT � mec

2 and that electrons/positrons are relativistic so εp = pc.

Compare this to the number density of photons, nγ. Which is larger, nγ or n−? [HINT:
you do not need to evaluate the integral to know the answer.]
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Problem 4 Phillips 3.3

Problem 5 Phillips 4.1

Problem 6 GS: Monte-Carlo Integration

A powerful technique for integrating problematic functions is known as Monte-Carlo inte-
gration. First developed during the Manhattan project, it uses random numbers to integrate
functions. The simplest way is:

• Given an integral:

I =

∫ xmax

xmin

dxf(x)

• We sample N uniform random numbers over the interval [xmin, xmax], xi

• We then approximate the integral by:

I ≈ xmax − xmin

N

N∑
i=1

f(xi)

There are fancier ways to do this, as you can see at:
http://en.wikipedia.org/wiki/Monte Carlo integration.

We will do Monte-Carlo integration on the integral from Problem 3c:

I =

∫ ∞
0

dx
x2

ex + 1

Now, we know analytically that this is 3ζ(3)/2 ≈ 1.803085354, where ζ(x) is the Riemann
zeta function. But let’s try to do this numerically.

One problem here is that the limits of integration are infinite. But we can’t pick xmax =
∞. So we need to try something else. If you plot the integrand f(x) = x2/(ex + 1) you will
see that it peaks near x = 2 and decreases steadily after that. So some value of xmax that is
> 2 will work. Another question is what value of N is best.

a. Write a routine that will do a Monte-Carlo integration of the integrand above for a
given value of N and xmax.

b. You should run this M = 100 times and determine how well your integration does.
i.e., compare your results to the exact result given above. The most useful quantity to
compute is:

e(N, xmax) =

√√√√ 1

M

M∑
j=1

[
Ij − 3

2
ζ(3)

3
2
ζ(3)

]2
This is the root-mean-square (rms) fractional error.
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c. Repeat this for a range of xmax and N . How does e(N, xmax) depend on N? How does
it depend on xmax (plot them!). Does that make sense? What happens to your results
as you increase xmax and why? This problem led to solutions such as the Metropolis-
Hastings algorithm.

Astron 400/Physics 903 Fall 2016 4


