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Lecture I Preliminaries

Course Description: quantitative astronomy. Emphasis on the “why” and the “how” rather than
just the “what.” Will explore the structure and evolution of stars.

• Hydrostatic equilibrium, pressure support, gravitational collapse

• Virial theorem

• Nuclear fusion, energy generation in the Sun

• Radiation, interaction of radiation and matter

• Stellar evolution, on and off the main sequence

• Stellar remnants

• Explosions

• Star formation

• The following semester (Astron 401) will extend this discussion beyond the Milky Way.

The textbook will be Phillips: The Physics of Stars (2nd edition)

Evaluation will be:

• Weekly problem sets (50%), with the best 10 of 11 counting.

• Midterm exam (20%)

• Final exam (30%)

For graduate students, each problem set will have a numerical problem. For undergraduates that
problem will be extra-credit.

I.2 Prerequisites

• Physics 309(P) (Physics 317 is preferred)

• Astron 103, 211 or permission of instructor.

I.2.1 Greek

If I use a symbol you don’t recognize or can’t read, ask!
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I.3 Precision

We often do not know things very precisely. So we use ∼ and ≈ and related symbols. ∼ is for
when we know something to an order of magnitude. So we if we know that x ∼ 5, we know
that x is between 5/3 and 5 ∗ 3, where 3 is roughly

√
10. This means that the possible range

for x is in total a factor of 10. We will also sometimes use ∼ to mean scales as. For example,
if you were to estimate the height of a person as a function of their weight (for a wide range of
people), you might expect that as you double the weight, the height changes by 21/3. We could
write height∼weight1/3. There will be a lot of variation, but this is roughly correct.

≈ means more precision. It doesn’t necessarily have an exact definition. But generally, if we say
x ≈ 5, that means that 4 is probably OK but 2 is probably not.

Finally, we have ∝, which means proportional to. This is more precise that the scales as use of
∼. So while for a person height∼weight1/3 is OK, for a sphere (where we know that volume is
4π/3r3) we could write volume∝ r3: we take this as correct, but leave off the constants (4π/3 in
this case).

I.3.1 Small Angles

For small angles θ, sin θ ≈ tan θ ≈ θ and cos θ ≈ 1. We need θ to be in radians. But we also
often deal with fractions of a circle. A circle has 360◦. We break each degree into 60 minute
(or arcminutes): 1◦ = 60′. And each arcminute into 60 seconds (or arcseconds): 1′ = 60′′, so
1◦ = 3600′′. But we also know that 2π radians is 360◦, so we can convert between radians and
arcsec. This will come up frequently: 1′′ = 360× 3600/2π ≈ 1/206265 radians.

I.4 Celestial Sizes, Distances, and Coordinates

I.4.1 Units

Astronomy emphasizes natural units (� is for the Sun, ⊕ is for the Earth):

• M� = 2× 1030 kg (solar mass)

• R� = 7× 108 m (solar radius)

• M⊕ = 6× 1024 kg ≈ 3× 10−6M� (earth mass)

• MJ = 2× 1027 kg ≈ 10−3M� (Jupiter)

• L� = 4× 1026 W (solar luminosity or power)

• light year = 1016 m: the distance light travels in one year (moving at c = 3× 108 m s−1)

• Astronomical Unit = AU = 1.5× 1011 m (distance between earth and sun)
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• parsec = parallax second (we will understand this later) = pc = 3× 1016 m = 206, 265 AU

• energies: eV=electron volt=1.6 × 10−19 J (typical chemical reaction is eV; typical nuclear
reaction is MeV)

• temperatures: often express as kBT , where kB = 1.4 × 10−23 J/K is Boltzmann’s constant.
kBT is an energy, can express in eV; 106 K is 86 eV

• Masses often expressed as energies (also in eV) via E = mc2, so:

– me = 511 keV (electron)

– mn ≈ mp ≈ 1 GeV (neutron or proton)

– mγ = 0 (photon — rest mass)

And then we use usual metric-style prefixes to get things like kpc, Mpc, etc.

Google/Wolfram Alpha/astropy can be very helpful when checking unit conversions.
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Lecture II Basic Concepts

Phillips Chapter 1. These are (in many cases) things we will go back over later.

II.2 Big Bang Nucleosynthesis

What ingredients do we have to make a star? Universe is mostly H, then He. Rest is details. How
did it get that way?

It started out very hot (we know this since the Universe is expanding and we see the left-over radi-
ation at 3 K now). Was a soup of interacting sub-atomic particles (electrons, positrons, neutrinos,
quarks). Eventually (after 10−4 s) free quarks got bound up into neutrons, protons, . . .. Neutrons
and protons in particular were in equilibrium:

νe + n→ e− + p

and
ν̄e + p→ e+ + n

at the same time. However, n is slightly more massive than p. At a temperature T , the ratio of
these is given by the mass (energy) difference:

Nn

Np

= e−∆mc2/kBT

This is a Boltzmann factor (will come back). ∆mc2 is energy difference, 1.3 MeV (remember
that mpc

2 ≈ 1 GeV, so difference is 0.1%).

As T goes down and universe expands, the reactions go more slowly and we get more protons wrt
neutrons. Finally it effectively stopped, and the ratio was frozen. This happened at T ∼ 1010 K,
with Nn/Np ≈ 1/5. Then went down a little more (to 1/7) through natural decay of n.

At 109 K, could make deuteron:
n+ p→ d+ γ

From these could make 3He, then 4He. 4He is very stable, so a lot of things got stuck there, except
for a little 7Li. But there were still a lot of protons left over. How much He?

Nn/Np ≈ 1/7. So take 2 neutrons, 14 protons (16 particles total, or a mass of ≈ 16 amu). Make
a single 4He nucleus, then 12 protons left. So out of 16 amu, 4 amu are in 4He, or mass of He is
≈ 25% total mass. This is pretty close to what we see.

II.3 Gravitational Contraction

Stars are one big fight against gravity. Temporary relief from thermonuclear fusion. But what are
they fighting against?

Spherical system with M , R. Only have pressure, gravity. density is ρ(r), pressure is P (r).
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Start at the center. How much mass out to r?

m(r) =

∫ r

0

dr′ρ(r′)4πr′
2

(dr′ρ(r′)4πr′2 is the mass of a shell at r′). Gravity only cares about enclosed mass, so:

g(r) =
Gm(r)

r2

What about pressure? Pressure on a parcel between r and r + ∆r (area=∆A, volume=∆r∆A). If
pressure at the top is the same as the bottom, no net force. But what if it is not the same?

P (r + ∆r) ≈ P (r) +
dP

dr
∆r

so difference (top − bottom, or inward) in force (pressure times area) is:[
P (r) +

dP

dr
∆r − P (r)

]
∆A =

dP

dr
∆r∆A

But acceleration is force / mass, and mass is volume times density (∆M = ρ(r)∆r∆A). So
acceleration from pressure is:

dP

dr

1

ρ(r)

The total acceleration is then:
d2r

dt2
= −g(r)− 1

ρ(r)

dP

dr

So if the star isn’t moving, then P must increase toward the center (dP/dr < 0).

II.3.1 Free Fall

What if P = 0? Deal with energies, not acceleration. Convert potential energy to kinetic. Start
at r0, mass enclosed m0. Initial K = 0, U = −Gm2

0/r0. K + U is always the same, and
K = m0v

2/2 = m0(dr/dt)2/2. So:

1

2

(
dr

dt

)2

− Gm0

r
=
−Gm0

r0

Can get the time to go all the way to the center (r = 0):

tFF =

∫ 0

r0

dr
dt

dr
= −

∫ 0

r0

dr

[
2Gm0

r
− 2Gm0

r0

]−1/2

The integral is a little messy, but you can show that the free-fall time tFFis just:

π

2

(
r3

0

2Gm0

)1/2

Only depends on m0/r
3
0. What has these units? ρ = m0/(4πr

3
0/3)! So

tFF =

√
3π

32Gρ

For the Sun, 1/2 hour. But for most things, eventually Pressure will stop collapse.
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II.3.2 Hydrostatic Equilibrium

Assume 0 acceleration. Then:

dP

dr
= −Gm(r)ρ(r)

r2
= −ρ(r)g(r)

This is a very important result: the equation of hydrostatic equilibrium (HSE). Applies to any
stable system (atmospheres, stars, etc).

If the whole thing is in equilibrium at all r, then this will be true everywhere. Can then look at
total potential energy: ∫ R

0

dr 4πr3dP

dr
= −

∫ R

0

dr
Gm(r)ρ(r)4πr3

r2

where we multiplied both sides by 4πr3 and integrated. RHS is:

UG = −
∫ M

0

dm
Gm(r)

r

where dm = 4πr2ρ(r)dr. Integrate LHS by parts:

P (r)4πr3|R0 − 3

∫ R

0

dr 4πr2P (r)

The first term is 0 (P (R) = 0). Second is average P times V: 〈P 〉V . So:

〈P 〉 = −UG
3V

This is a very important result — one way of expressing the virial theorem. Can work for lots of
things. What about particles in a box?

II.3.3 Kinetic Origin of Pressure

Box with side L has N particles. Particle hits top/bottom at a rate vz/2L (collisions/s) and imparts
2pz (redirects with equal velocity). So momentum per time per area is 2pzvz/2L/L

2 = pzvz/L
3.

But momentum per time is force, and force per area is pressure. Total of N particles:

P =
N

L3
〈pzvz〉

Assume all directions are the same, so:

〈pxvx〉 = 〈pyvy〉 = 〈pzvz〉 = 〈~p · ~v〉/3 =
n

3
〈~p · ~v〉/3

n is N/V or number density.
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Can then do this for different types of particles. Total energy of a particle ε2 = p2c2 +m2c4 (kinetic
+ rest-mass). NR: p� mc, so ε = mc2 + p2/2m. UR: p� mc so ε = pc. Can show:

PNR =
2

3

K

V

PUR =
1

3

K

V

So if NR:
〈P 〉 =

2

3

K

V
= −UG

3V

or UG = −2K. Other ways to write this are (E = U + K): E = −K, E = U/2. Overall E < 0
so the system is bound.

Strange consequence: add a little energy slowly. Add 1% of total energy, U goes down by 2%,
K goes up by 1%. So for a contracting cloud converting gravitational energy to radiation (early
model for the Sun) will get hotter (K goes up) as it contracts.

What if energy comes from nuclear reactions at the center? E goes up, soK goes down. Therefore
it cools down! Adding energy makes it cooler?

II.4 Ideal Gas Law

You may know from chemistry:
PV = nmolRT

with nmol the # of moles, and R the ideal gas constant. But we are physicists. So the total number
of molecules is Nmolec = NAnmol, and we can write:

PV = Nmolec
R

NA

T

Divide both sides by V :

P =
Nmolec

V

R

NA

T

Have kB = R/NA is Boltzmann’s constant. And:

n ≡ Nmolec

V

is the number density: the number of particles per volume (units are m−3, since number doesn’t
have a unit).

P = nkBT

Can also write in terms of mass density ρ (kg m−3):

ρ ≡ mmolecn

so
P =

ρ

mmolec

kBT

ASTRON 400/PHYSICS 903 FALL 2016 8



Astron 400/Physics 903, Fall 2016 Lecture II.6

II.5 Star Formation

Cloud collapses under influence of gravity. Details complicated. But basic conditions must be
satisfied. Gravity must be stronger than pressure (kinetic energy).

U = −f GM
2

R

(f depends on density distribution, f ∼ 1).

K =
3

2
NkBT

Need |U | > K for collapse. Can write this as:

M > MJ =
3kBT

2Gm̄
R

where m̄ is average mass of particle (M = Nm̄). Or

ρ > ρJ =
3

4πM2

(
3kBT

2Gm̄

)3

These are the Jeans mass and density.

So want a big cloud to collapse. But does a big cloud make a big star? Generally it breaks up along
the way (fragmentation).

T = 20 K, M = 103M�, needs ρ = 10−22 kg/m3 (n = 105 m−3) to collapse (not too bad). But for
1M� density needs to be 106 times higher.

II.6 The Sun

M = 1M�, R = 1R�. So average density is 1.4 × 103 kg m−3. tFF = 30 min, which isn’t
happening, so there must be pressure.

〈P 〉 =
−U
3V
≈ 1

3

GM2
�

R�

3

4πR3
�

=
GM2

�

4πR4
�
≈ 1014 Pa

Can also say 〈P 〉 = 〈ρ〉kBT/m̄ (ideal gas law). m̄ ≈ 0.5 amu (ionized H). So

kBT ≈
GM�m̄

3R�
≈ 0.5 keV

or T ≈ 6× 106 K. Hotter (and denser etc.) toward center.
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II.6.1 What Powers the Sun and How Long Will It Last?

We take the Solar luminosity to be 4 × 1026 W, and try to find a way to get that amount of energy
out over a long time.

The first estimate was due to Lord Kelvin (1862, in Macmillan’s Magazine). This estimate (known
now at the Kelvin-Helmholtz time, tKH) was shown to be< 100 Myr. But Darwin said (at the time)
that fossils were at least 300 Myr old. So something weird was going on. Kelvin’s estimate may
have been wrong by a bit, but it couldn’t be that bad. So there had to be some unknown energy
source.

The lifespan of the Sun could be due to:

1. Chemical energy

2. Gravitational energy

3. Thermal energy (could it have just been a lot hotter in the past?)

4. Fission?

The answers for all of these are no. Kelvin’s estimate concerned specifically gravitational. Chem-
ical energy isn’t enough, since we know about how much chemical energy a given reaction can
release for a given amount of stuff. Same with fission.

II.6.2 Gravito-Thermal Collapse, or the Kelvin-Helmholtz Timescale

This ascribes the luminosity to the change in total energy: L is change in E = K + U .

If you do this you get a timescale of tKH ∼ 107 yr, which is� tff :

tKH ∼
E

L

But E ∼ GM2
�/R� ∼ 1041 J = 1048 erg (1 J=107 erg).

That is because as collapse occurs, |U | increases so K increases too. That heats up the star, which
slows down the collapse.

We can use the Virial theorem to get the central temperature Tc of the Sun. We assume that the
center (the hottest/densest bit) dominates K:

K ∼ 3

2
kBTc

M

m̄

with m̄ ≈ mp the average particle mass. And K = −U/2, with U ∼ −GM2
�/R�. So we find

Tc ∼ GM�mH/kBR� ∼ 107 K. This is pretty good (the real number is about 1.6× 107 K).
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II.6.3 Solar Radiation

Stars are close to blackbodies. Define effective temperature:

L = 4πR2σT 4
Eff

σ is the Stefan-Boltzmann constant. For the Sun, TEff ≈ 6000 K. This means the blackbody peaks
in the visible portion of the spectrum. And this is much cooler than the interior.

How does it get from very hot interior to cool exterior?

Center of the Sun: nuclear reaction releases energy in the form of neutrinos (which escape) and
photons (gamma-rays). How long to get out? A naive answer is ∼ R�/c = 2 s. But not for
photons.

It actually takes ∼ 107 yrs. Why? Because a star is a very crowded place, and photons (even
though they move fast) cannot move very far before they wack into something else and end up
going in another direction. They easily bounce (scatter) off of ions, electrons, and atoms, and even
other photons.

Each bounce tends to make the photon lose energy, but more photons are then produced, conserving
energy. In the center the photons start out as X-ray photons, but by the time they get to the surface
of the star they are optical photons. They get there via a random walk.

Assume that a photon will move (on average) a distance lmfp before it hits something and changes
direction. That distance is the mean free path. It travels a distance d after N collisions. We can
determine what d(N) is. Assume each one moves ~li for i = 1 . . . N , with |~li| = lmfp. So the total
distance is the vector sum:

~d =
N∑
~li

We want the magnitude of this, |~d| =
√
~d · ~d. But

~d · ~d =
N∑
i

~li ·~li +
∑
i 6=j

~li~lj

The second term there will go to 0 on average, since the directions are different. So |~d|2 = N |~l| =
Nlmfp, or d =

√
Nlmfp. This is in fact a general result with applicability to a wide range of areas.

From this we can determine how long does it take for a photon to diffuse out of the star. To go a
distance d, it takes:

d
c

lmfp > d

N
lmfp

c
= d2

lmfpc
lmfp < d

This is also often referred to as a “drunkard’s walk”. So to go R� it takes:

R2
�

lc

ASTRON 400/PHYSICS 903 FALL 2016 11



Astron 400/Physics 903, Fall 2016 Lecture III.8

which is a factor of R�/l longer than basic escape. So luminosity (energy per time) also changes
by that factor. Naive luminosity for central temperature is:

L = 4πR2
�σT

4
I

but in reality it is TEff = 6000 K� TI = 6,000,000 K. So:

TEff ≈ TI

(
l

R�

)1/4

which would give l ∼ 1 mm (very small!). Which would give about 50,000 yr to diffuse (too small,
but not horrible).

II.7 Stellar Life Cycles

Big Bang: mostly H and He. Stars make the rest. T at the center of a star is pretty close to constant,
set by fusion (hotter→ faster→ bigger→ cooler). So M/R ∼ constant.

Energy escape determines luminosity. Since L ∼ R2T 4
I (l/R) ∼ R2(M/R)4(l/R) ∼ ρM3.

Since L ∼ M3 (roughly), determined by how fast energy can escape. So lifetime is ∼ M/L ∼
M−2: bigger stars use up their fuel much faster. About 1010 yr for the Sun.

II.8 Color-Magnitude Diagram

Plot TEff increasing to the left, L increasing up. Hotter is the same as bluer, so often plot color
(blue to the left) on the x-axis. We can directly observe color. And instead of L plot magnitude,
where m = m� − 2.5 log10(L/L�). So it decreases going up, but that still means brighter.

Most of the stars define the Main Sequence. This turns out to be where normal H fusion is
occuring. Can also identify regions for Red Giants and White Dwarfs.
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Lecture III Matter & Radiation

Phillips, Chapter 2

Star: matter and radiation fighting against collapse. Material can be extreme (ionized, degenerate,
relativistic, . . .) but can gain insight from ideal gases. We start with a pretty general framework,
and then work to specific examples.

III.2 Ideal Gas

Energy of quantum states of particles not affected by interactions. Could be atoms, molecules,
ions, electrons, photons, etc.

III.2.1 Density of States

Look at wave-like properties. Each particle in a box with side L. So each particle has a standing
wave with wave vector (kx, ky, kz) such that integer number of cycles in L: kx = nxπ/L etc. Don’t
care about direction, only magnitude k. Look at all of the states in a spherical shell between k and
k + dk. Volume of this is 4πk2 dk/8 (only 1 octant of sphere since k > 0). Number of states is:(

L

π

)3
4πk2 dk

8

We want to look at momenta. p = h/λ (λ is de Broglie wavelength), or p = ~k. So number of
states in a momentum bin between p and p+ dp is:

g(p)dp =
V

h3
4πp2 dp

If there is also spin, multiply by gs (number of spin states or polarizations). gs = 2 for electrons,
photons.

III.2.2 Internal Energy

Density of states + energy of states + number of particles per state give internal energy. General
energy of states:

ε2 = p2c2 +m2c4

So total energy is:

E =

∫ ∞
0

dp g(p)ε(p)f(ε)

where f(ε) is average number of particles with energy ε. Total number of particles is:

N =

∫ ∞
0

dp g(p)f(ε)
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Thermodynamics: temperature T , pressure P , chemical potential µ:

dE = TdS − PdV + µdN

gives changes in total energy from changes in entropy S, volume V , number of particles N . But
still need to know f(ε).

If fermions (Pauli exclusion principle: only 1 particle per state):

f(ε) =
1

exp[(ε− µ)/kBT ] + 1

This works for electrons, atoms.

If bosons (can be many particles per state):

f(ε) =
1

exp[(ε− µ)/kBT ]− 1

This works for photons. Bosons can have many more particles at low ε.

As T increases density of states decreases, and fermions and bosons both look similar → dilute
classical gas. This happens when:

e(mc2−µ)/kBT � 1

so both become:
f(ε) ≈ e−(ε−µ)/kBT � 1

All states have � 1 particle, so Pauli exclusion does not matter. Instead everything just follows
Maxwell-Boltzmann statistics.
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III.2.3 Pressure

Like we did before, relate pressure to internal energy (did for classical — quantum here).

Change volume by dV , hold others fixed. So dE = −PdV . Therefore

P = −∂E
∂V

= −
∫ ∞

0

dε

dV
f(ε)g(p)dp

From this can find the same relation as before for P (E).

III.2.4 Ideal Classical Gas

Generally familiar, but look at relativistic and when classical parts fail.

When occupation� 1:

P =
1

3V
eµ/kBT

∫ ∞
0

pvpe
−ε/kBTgs

V

h3
4πp2dp

But dε = vdp, so integral is∫ ∞
0

p3e−ε/kBTvpdp = −kBT
∫
p3d(e−ε/kBT )

Integrate by parts, get:

P =
kBT

V
eµ/kBT

∫ ∞
0

e−ε/kBTgs
V

h3
4πp2dp

But the integral is just like the integral that we do for N , so

P =
N

V
kBT = nkBT

Ideal Gas Law!.

If we want total number of particles, can use ε = mc2 + p2/2m for non-relativistic particles to get:

N = e(µ−mc2)/kBTgs
V

h3
(2πmkBT )3/2

Or can solve:
µ−mc2 = −kBT ln

(gsnQ
n

)
where n = N/V and :

nQ ≡
(

2πmkBT

h2

)3/2

is the quantum concentration.

If UR, then:
µ = −kBT ln

(gsnQ
n

)
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and

nQ ≡ 8π

(
kBT

hc

)3

What do these mean? Remember that classical if concentration is� 1. This happens when

e(mc2−µ)/kBT � 1

or if n� nQ. If there is� 1 particle per quantum “box”, then classical. Size of box is:

λ = h/p ≈ h/
√
mkBT

(for NR), and separation between particles is ∼ n−1/3. For UR, λ ≈ hc/kBT . Want separation to
be� λ.

Photons are UR, but also have µ = 0, m = 0, so are always quantum. But if m > 0 can be
quantum or classical.

Difference happens fastest for lightest particles, since λ increases as m decreases. So when we
make stuff denser (star contracts), electrons become quantum first. This leads to many important
effects.

III.3 Electrons in Stars

Here relativistic and quantum effects can both be important. But are they important in the Sun?
ρ ∼ 103 kg/m3, T ∼ 6× 106 K.

Compare kBT to mec
2: kBT ≈ 10−3mec

2, so pretty NR.

Compare n to nQ: n ≈ 6 × 1029 m−3 (based on ρ). nQ ≈ 3 × 1031 m−3 for T = 6 × 106 K, so
pretty ideal too (n� nQ).

But what will happen as the Sun evolves and contracts? T ∼M/R, so as R goes down T goes up,
and as T goes up nQ goes up.

nQ ∼ T 3/2 ∼ R−3/2

But n also goes up, and it goes up faster:

n ∼ R−3

So from this n will eventually exceed nQ, and quantum effects will become important.

III.4 Degenerate Electrons

Very important concept

Quantum effects, n� nQ, means high density. OR low temperature

kBT �
h2n2/3

2πme
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So it can still be > 106 K, but cold in a quantum sense. This is a degenerate gas: quantum states
overlap, and electrons end up piled into the states with the lowest energies. Pauli exclusion princi-
ple is very important. Take the f(ε) from before. If µ = 0 and T → 0, then:

f(ε) =

{
1 ε ≤ εF
0 ε > εF

εF is the Fermi Energy: all states up to there are filled, and no states are above there. Can also
have Fermi momentum pF .

Can then get the total number from the distribution (easy to integrate now):

N =

∫ pF

0

gs
V

h3
4πp2dp =

8πV

3h3
p3
F

Since we can use n = N/V :

pF =

(
3n

8π

)1/3

h

since p = h/λ, λ ∼ n−1/3 as we would expect (each particle occupies the smallest possible
quantum box).

We can get the other properties (pressure etc). NR is pF � mec, or n� (mc/h)3 where h/mc =
2.4× 10−12 m is the Compton wavelength of electron. So ε = mec

2 + p2/2me and

E = N

(
mec

2 +
3p2

F

10me

)
Since P = 2K/3V for a NR gas, identify the second term as K and say:

P = n
p2
F

5me

Substitute back in and get:
P = KNRn

5/3

with

KNR =
h2

5me

(
3

8π

)2/3

This general result P ∝ n5/3 is very important. For UR, n� (mec/h)3 and ε = pc so:

E =
3

4
NpF c

which gives P = npF c/4, or
P = KURn

4/3

with

KUR =
hc

4

(
3

8π

)1/3

Now P ∝ n4/3. This change in exponent has important consequences.
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III.4.1 Density Temperature Diagram

Different combinations of n, T give different results. Classical vs. degenerate, NR vs. UR. Com-
pare n to nQ in UR and NR limits, and for n� nQ compare kBT to mec

2 (Figure 2.2).

1020 1025 1030 1035 1040 1045100

105

1010

1015

ne (m−3)

T 
(K

)

CLASSICAL, UR, P=nkT

CLASSICAL, NR, P=nkT

DEGENERATE, UR, P∼ n4/3

DEGENERATE, NR, P∼ n5/3

Sun

White Dwarf

Normal Metal

Core of SN progenitor

Dividing lines kT = mec
2 or T = 6× 109 K, n ∼ 7× 1034/m3

When are things not ideal? When direct interactions occur, mostly electrostatic (electrons + ions).
This is important when Ze2/4πε0r ∼ kBT , or:

Ze2

4πε0kBT
n1/3 > 1

But this only works if ε ∼ kBT , which does not apply if degenerate. Then ε is only a function of
the density, so (NR) look at:

Ze22me

4πε0h2
n−1/3

As n increases this gets lower, so electrostatics become less important.

ASTRON 400/PHYSICS 903 FALL 2016 19



Astron 400/Physics 903, Fall 2016 Lecture III.4

III.4.2 Electrons in the Sun

At the center, ne ∼ 8× 1031 m−3, T = 1.6× 107 K. So nQ = 1.5× 1032 m−3 and we are not that
far off. Mostly classical, but need corrections.

Sun burns H, turns into He. Center will turn into He with burning H around that, T will increase
to 2× 107 K, ne up to 3× 1032 m−3. This is above nQ: center becomes degenerate.

Eventually ne ∼ 10nQ, so “cold” gas at 108 K.

But soon will become hot enough for He to burn (into C). If were non-degenerate, fusion makes
energy, makes gas expand, makes temperature fall, so fusion slows down (regulated). But not if
degenerate. Then temperature will not change during expansion, so will not cool down. He burning
goes uncontrolled in a helium flash. Lots of burning, but most of the energy does not escape as
radiation — instead it expands and eventually becomes non-degenerate. Finally you get normal,
controlled fusion.

Sun cannot go past this. Will leave behind white dwarf composed of mostly C and O. Central
density will be ∼ 109 kg m−3 for 0.5M�, 108 K. Ions will cool gradually, but electrons hold up the
star through denegeracy pressure.

III.4.3 Electrons in Massive Stars

Degeneracy is less important:

kBT ≈
GMm̄

3R
∝M2/3ρ1/3

Need a given T to ignite fusion. But for higherM this will happen at a lower ρ, so massive stars are
less degenerate. Some stars (> 11M�) can evolve and burn all the way to Fe without degeneracy
worries.

But this will matter at the end. When fusion stops, density increases, and electrons will be ultra-
relativistic & degenerate: T ≈ 8 × 109 K, ρ ≈ 4 × 1012 kg m−3. So ne ≈ 1039 m−3 � nQ, and
pF ≈ 12mc. This leads to collapse of the central core→ supernova.

III.4.4 Stability and the Adiabatic Index

(Phillips 1.2)

Look at generic equation-of-state of a gas. Adiabat: entropy is constant, given by PV γ=constant
with γ the adiabatic index. (related to degrees of freedom, γ = 1 + 2/DOF: for a non-relativistic
monatomic gas with only 3 DOF, γ = 5/3).

If PV γ=constant:
γ
dV

V
+
dP

P
= 0

or
d(PV ) = PdV + V dP = −(γ − 1)PdV
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Since this is adiabatic, no heat is added: change in internal energy is just from the work done. So

dK = −PdV =
1

γ − 1
d(PV )

If γ is a constant we can integrate and get:

K =
1

γ − 1
PV

What if we have a gravitating bound gas in equilibrium. Then use virial theorem:

〈P 〉 = (γ − 1)
K

V
= −1

3

U

V

So we have
3(γ − 1)K + U = 0

What we had derived before for NR and UR gases works if γNR = 5/3 and γUR = 4/3.

Total energy
E = K + U = −(3γ − 4)K

To be bound, we need E < 0, so this requires γ > 4/3. As γ → 4/3 then E approaches 0 and
the gas becomes very loosely bound, and very small changes in the total energy come with very
large changes in K and U . This becomes unstable, as small perturbations can drive E ≥ 0. And
this is relevant, since for a NR gas γ = 5/3 and things are stable, but as the gas becomes UR and
γ → 5/3 the gas becomes unstable. Other effects (new ways of absorbing heat, such as ionization)
will have the same result.

What this means is that changes in energy almost cancel exactly between K and U . For instance:
γ = 4/3 · 1.01. Add 25 J to K, U will become more negative by 26 J, so E will become more
negative only by 1 J. Anything that throws off the balance will mess this up.

Relation to electrons: PNR ∝ n5/3, PUR ∝ n4/3. But n = 1/V , so we have PNR ∝ (1/V )5/3 or
PNRV

5/3 =constant which says that γ = 5/3 for NR electrons (as I said above) and 4/3 for UR
electrons. So as electrons become UR, the star gets unstable.

III.5 Photons in Stars

Electrons play a major role in stars. They carry a lot of the pressure, they become degenerate,
they conduct, and they scatter. Aside from the ions the other major constituent are the photons
(radiation). This can also be an important source of pressure and transport of energy.

III.5.1 The Photon Gas

EM radiation: assume a blackbody, or an ideal gas of photons (must be quantum sincem = µ = 0).
All particles move at c. But since can make or remove photons at will, µ = 0.
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dE = TdS − PdV + µdN

N will change to maximize S at fixed E, V . So

∂S

∂N
= −µ

T
= 0

Can show with a bit more thermo that this happens when µ = 0.

For photons, get number per state:

N(p)dp =
1

eε/kBT − 1
gs
V

h3
4πp2 dp

With ε = pc (photons are relativistic) and gs = 2. So integrate over all energies to get total number
density:

n =
1

V

∫ ∞
0

N(p)dp

The math is slightly messy (see book), but we get n = bT 3 with b = 2.404(8πk3
B/h

3c3) =
2.03× 107 K−3 m−3. And can do the same for E to get energy density u = E/V , finding u = aT 4

with a = 8π5k4
B/15h3c3 = 7.565× 10−16 J K−4 m−3. Or you can combine to get u = 2.70nkBT .

Which means that the average energy of a photon is 2.70kBT . Compare to 1.5kBT for a classical
gas and 3kBT for a UR gas.

Just like with electrons, the pressure is related to the energy density:

P =
u

3
=

1

3
aT 4

You can also think of a box with a small hole through which photons escape. Look at the amount
of energy escaping through that hole. Photons escape at a rate of nc/4 per unit area: effective
speed is c/4 comes from integrating photons moving in all directions. [In all directions, photons
spread out over 4π steradians ∫ 2π

0

dφ

∫ π

0

dθ sin θ = 4π

where dΩ = sin θdθdφ is a spherical angle element. Going through the whole, we multiply the
photons transport of energy by cos θ since this is the projection of their motion onto the perpendic-
ular, and only integrate for half of the sphere θ = 0 → π/2. Which gives us π, and this is 1/4 of
the total from before.]

So the rate of energy escape is uc/4 per unit area, or acT 4/4. We say:

F = σT 4 W m−2

is the energy flux, with σ = ac/4 = 5.67× 10−8 W K−4 m−2 the Stefan-Boltzmann constant.

We can also write this in terms of intensity Iν : J/s/m2/Hz, which is energy per time per area per
frequency interval:

Iνdν =
c

4
uνdν =

c

4

hν

ehν/kBT − 1

4πν2

c3
dν
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Which is the Planck blackbody function.

You can differentiate this wrt ν and find a maximum at ν = 2.82kBT/h, which says that the most
probable energy is 2.82kBT . This is slightly different from the average energy (mean vs. mode).

III.5.2 Radiation Pressure

How important is it in stars? Look at solar surface (photosphere) and interior.

Property Surface (6× 103 K) Interior (6× 106 K)
Average photon energy (eV) 1.4 1400
Photon density n (m−3) 4× 1018 4× 1027

Radiation energy density u (J m−3) 1 1× 1012

Radiation pressure (Pa) 0.33 0.33× 1012

Radiation intensity σT 4 (MW m−2) 73 73× 1012

At the surface, radiation pressure Prad is tiny, even compared with pressure on the Earth (1 atm
= 10−5 Pa). But much more significant inside. Even so, � 1014 Pa needed to keep the star from
collapsing. So the Sun is mostly supported by pressure from ions and electrons.

What about other stars? T ∼M/R, and ρ ∼M/R3. So

Pg = nekBT + nikBT ∝
M2

R4

(as we said before). What about radiation?

Pr =
a

c
T 4 ∝ M4

R4

So
Pr
Pg
∝M2

There can be stars that are massive enough that radiation pressure dominates. In particular, for
M > 50M� this matters a lot. And this messes things up since photons are relativistic: they have
an adiabatic index of 4/3 so stars supported by Pr are not very stable.

III.6 The Saha Equation

Basic way to keep track of populations of related states in equilibrium. For instance, molecules↔
atoms, or atoms↔ ions+electrons.

Consider H in equilibrium with radiation, and derive Saha equation for ionization of H.

Need to think about chemical potential µ. If one type of particle, they move from high µ to low
µ until µ is the same everywhere (make energy the same, and dE = µdN , so if µ is high make
dN < 0). What if we have multiple types of particles? Consider A, B, C, D:

A+B ↔ C +D
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In equilibrium where chemical potential is equal on both sides:

µ(A) + µ(B) = µ(C) + µ(D)

H atoms: electrons are in bound states with εn = −13.6 eV/n2 and n = 1, 2, . . . (Bohr atom).
When it is ionized, electron can have any momentum ~p and energy ε(p) = p2/2me (NR).

Equilibrium: photon hits atom, liberates electron. Eventually electron hits ion, gets captured,
releases photon. So reaction is:

γ + Hn ↔ e− + p

(p here is proton). Since µ = 0 for photon:

µ(Hn) = µ(e) + µ(p)

Treat as classical ideal particles, NR:

µ(e) = mec
2 − kBT ln

(
genQ,e
ne

)

µ(p) = mpc
2 − kBT ln

(
gpnQ,p
np

)
µ(Hn) = mH,nc

2 − kBT ln

(
g(Hn)nQ,p

nH

)
We know the mass of the bound atom:

m(Hn)c2 = mec
2 +mpc

2 + εn

(mass of electron + proton - binding energy). nQ for H is basically that for proton, since depends
on the de Broglie wavelength. And ge = gp = 2. For the bound atom the degeneracy is different.
g(Hn) = 4n2 counting electron, proton, and angular momentum states. So we can find:

n(Hn)

nenp
=

gn
nQ,e

e−εn/kBT

We then consider all possible bound states, and sum up over n. So

n(H)

nenp
=

1

nQ,e

∞∑
n=1

gne
−εn/kBT

Or:
n(H)

nenp
=

Z

nQ,e
eEi/kBT

with Ei = −ε1 = 13.6 eV is the ionization energy (n = 1→∞) and

Z ≡
∞∑
n=1

gne
−(εn−ε1)/kBT
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The energy difference is the excitation energy of the nth level. Z is a partition function: it tells
how many particles are in each sub-state. It can formally diverge, but in reality this would be for
an infinitely large atom. So we trunctate the sum where the size of the atom becomes comparable
to the distance between atoms. We end up with Z ≈ 1.

With that, we can write:
n(H+)

n(H)
≈ nQ,e

ne
e−Ei/kBT

So a very strong temperature dependence. As T goes up, we get many more ions. But also
depends on density: if density decreases, ionization also goes up (once it is ionized, will stay
ionized longer).

III.7 Ionization in Stars

III.7.1 Stellar Interiors

First only H. So we have ions and atoms. Total mass density:

ρ = mH(n(H) + n(H+))

We then write x(H) = n(H+)/n(total) is the ionization fraction. So:

ne = n(H+) = x(H)ρ/mH

and
n(H) = (1− x(H))ρ/mH

We can then solve for x using the Saha equation and find:

1− x(H)

x(H)2
≈ ρ/mH

1021T 3/2
e158,000/T

So for the average conditions we had been assuming for the Sun, ρ ≈ 1400 kg m−3 and 6× 106 K,
we get x(H) ≈ 95%. Which says that H is mostly but not completely ionized. However, this is
an underestimate. The H atoms are not an ideal gas at this density. The typical spacing between
particles is ∼ (ρ/mH)−1/3 = 10−10 m or 1 Å, which is the typical size of an atom. So atoms
interact strongly (not an ideal gas) and the amount of ionization is increased.

Heavy elements (there are some)? The inner electrons will be very tightly bound, but the number
of total electrons (provided by ionized H) is so high that it surrounds the small number of atoms
and keeps them ionized.

Example: C in H at ρ ≈ 1400 kg m−3 and 6× 106 K. All H ionized, so ne = 8× 1029 m−3. Carbon
has Z = 6 protons, so the ionization energy is Z2 times that of H for the inner-most electron. We
look for ions with 1 electron left compared to those with 0:

n(C+6)

n(C+5)
≈ 1021T 3/2

ne
e−36×158,000/T ≈ 10
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Again this is a bit of an underestimate, but it suggests that things are pretty ionized.

If we assume everything is completely ionized, then it simplifies further analysis. XH, XHe, XA

are the mass fractions of H, He, metals. When ionized, we can determine the total number density
(which matters for pressure, e.g.):

n ≈ 2nH + 3nHe +
A

2
nA =

(
2XH +

3

4
XHe +

1

2
XA

)
ρ

mH

where we assume Z ≈ A/2 electrons per neutron in the heavy elements. Since the mass fractions
add to 1, we can say:

n ≈
(

1 + 3XH +
1

2
XHe

)
ρ

2mH

From which we can get the average particle mass m̄ = ρ/n. In the standard Solar model, XH =
0.71, XHe = 0.27, and XA = 0.02, so m̄ ≈ 0.61 amu. However, the fractions change with depth,
so deep inside m̄ ≈ 0.85 amu.

III.7.2 Stellar Atmospheres

These are the portions that give rise to the spectra we actually see (where T = TEff). For stars, go
from 30,000 K to 3,000 K. As this happens the spectra change considerably, going from lines of
He, to H, to metals, to molecules. That is mostly just from T effects (not changes in composition).
Look at importance of ionization.

Metals (Li, Na, Mg, Al, K, Ca) has outer electrons that are weakly bound,∼ 5 eV. For T ≥ 5000 K
(0.4 eV) they are mostly ionized. Other elements (H, C, N, O) are typically partially ionized (more
at high T ). He, Ne are very tightly bound (∼ 20 eV): ionized only at highest T .

Use H, He, Na to demonstrate, with binding energies of 13.6 eV, 24.6 eV, 5.14 eV.

n(Na+)

n(Na)
≈ 1021T 3/2

ne
e−60,000/T

n(H+)

n(H)
≈ 1021T 3/2

ne
e−158,000/T

n(He+)

n(He)
≈ 1021T 3/2

ne
e−286,000/T

So at a typical temperature of 6,000 K

n(Na+)

n(Na)
≈ 107n(H+)

n(H)

n(He+)

n(He)
≈ 10−10n(H+)

n(H)

Very dramatic differences! So even though Na is 10−6 of H by number, it supplies more electrons.
For a typical density, 10−4 of H is ionized at 6000 K, but 50% is ionized at 9000 K, and 50% of He
at 15,500 K.
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III.7.3 Spectral Classification

Depend on differences in spectral lines, such as presence of absence of Balmer (n = 2) lines of H.
If we see Balmer lines, there must be atoms with electrons in the n = 2 state. If it were too cold
then all electrons would be in n = 1. If too hot, all ions. We find this happens for 6000–11,000 K.

Hotter stars: might have He lines. From He+, so lost single electron. This happens between
12,000–30,000 K. Metal lines are for cooler stars (where they are not totally ionized), 3000–
6000 K.

Overall, atmospheres obey Kirchoff’s laws. The bottom parts are hot and opaque and emit at all
wavelengths. Outer lays let most wavelengths pass through except for a few that correspond to
transitions of interest, so we get absorption lines. But there is another source of absorption at a
range of wavelengths coming from H− ions.

This is one proton + 2 electrons. Weakly bound, 0.75 eV. So a long-wavelength photon can knock
away an electron:

γ + H− ↔ e− + H

This can happen for photon energies down to 0.75 eV, or wavelengths out to 1650 nm (near-IR).
When this happens, photons of many wavelengths are all absorbed, and the material becomes
opaque.

But we need electrons! From where? A small amount of metals M.

ne = n(M+) = x(M)(n(M) + n(M+))

with ionization fraction x. If similar to sodium, use Saha equation:

1− x
x2
≈ n(M) + n(M+)

1021T 3/2
e60,000/T

And then we can write:
n(H−)

n(H)
≈ ne

1021T 3/2
e8700/T

We can solve these to get the ionized metal fraction and the concentration of H− ions. We find
the H− ions peak around 3500 K and go down on either side. On one side there are not enough
electrons, while on the other things are too energetic to stay bound. So if T < 3000 K it will
no longer absorp visible radiation. This means that the layer of gas we see (which has to absorb
radiation, since otherwise it would cool way down) is at about 3000 K for most stars.

This matters for red giants. L increases. As that happens the outer part of the star moves out, so
R increases and T decreases. But T cannot change too much so R has to change more, and stars
move with nearly constant T .

III.8 Reactions at High Temp

When atoms can no longer exist. Need to worry about positrons or fission of nuclei.
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III.8.1 Positrons

γ + γ ↔ e+ + e−

Need kBT ∼ mec
2. Saha equation gives:

n(e−)n(e+) = 4n2
Qe
−2mec2/kBT

Here n(e−) is entirely determined by the background mass density, ρ/2mH. Might need to use
UR nQ, as appropriate. Example: ρ = 107 kg m−3 and T = 109 K. n(e−) = 3 × 1033 m−3 and
n(e+)/n(e−) ≈ 1/100. But as densities increase we cannot use this, since the limited quantum
states available to the electrons (i.e., degeneracy) will inhibit formation of pairs. So this happens
at high T and low(er) ρ.

One consequence of this is that it can cool the central parts of stars through neutrinos.

γ + γ ↔ e+ + e− → νe + ν̄e

Only rarely (10−22 reactions) are neutrinos produced, but they can escape right from star and take
energy with them. So instead of the energy sticking around and bouncing and keeping the center of
the star hot to prevent collapse the hottest regions can cool extra quickly. It doesn’t actually make
the star cool, but it ends up speeding up nuclear reactions (i.e., evolution).

III.8.2 Photodisintigration of Nuclei

Like ionization, but for nuclei. Ionization is at a few 1000 K, but the binding energy of a nucleus
is about 106 times higher, so T ∼ 109 K.

Example:
γ +20 Ne→16 O +4 He

This helium can then be important in stimulating other reactions later.
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Lecture IV Reminder: Number Density

We normally think of density as mass density, ρ:

ρ ≡ mass

volume

But sometimes we care more about the number of things in a volume. This is number density, n:

n ≡ number

volume

We can relate n and ρ is we know what we are talking about. Say we have a box with hydrogen
gas in it. The box has a volumne of 1 m3. And we have 1000 atoms in the box. So the total number
of atoms will be N = 1000. And volume V = 1 m3. Which gives:

n =
N

V
= 1000 atoms m−3

Note that I wrote the units as atoms m−3. But “atoms” aren’t really a unit. They are dimensionless.
So I could also have written:

n =
N

V
= 1000 m−3

To get the mass density, we take:

ρ =
M

V

But what is M? It is the total mass in the box. This is the mass of each atom times the number
of them in the box. So we need to know how much mass each atom has. That is 1 amu, or
1.67× 10−27 kg. Therefore:

M = 1.67× 10−27 kg

atom
× 1000 atom = 1.67× 10−24 kg

Therefore, the mass density is:
ρ = 1.67× 10−24 kg m−3

The quantity that helps us go between ρ and n is the average mass of the particles in our box, m̄:

ρ = m̄n

In this case the particles were all the same, so it’s easy: m̄ = 1.67× 10−27 kg. But they don’t have
to be the same.

In our box (still same V ) we could have 1000 H atoms and 500 He atoms. We know mH =
1.67× 10−27 kg, and mHe = 4× 1.67× 10−27 kg = 6.69× 10−27 kg. The total number of “things”
in the box is now N = 1000 + 500 = 1500, so:

n = 1500 m−3
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What about ρ?

M = 1000× 1.67× 10−27 kg + 500× 6.69× 10−27 kg = 5.02× 10−24 kg

So we know that ρ = 5.02 × 10−24 kg m−3. Which means that m̄ = ρ/n = 3.34 × 10−27 kg =
2 amu.

Or we can have the same box and have 1000 H ions, which means p and e−. So mp = 1.67 ×
10−27 kg, and me ≈ 0. The total number of “things” in the box is now N = 1000 + 1000 = 2000,
so:

n = 2000 m−3

What about ρ?

M = 1000× 1.67× 10−27 kg + 1000× 0 = 1.67× 10−24 kg

So we know that ρ = 1.67 × 10−24 kg m−3. Which means that m̄ = ρ/n = 8.36 × 10−27 kg =
0.5 amu. So even though the total mass density is the same as the first example, the number density
is different: we have twice as many “things” floating around.

You can extend this to more complicated mixtures.
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Lecture V Reminder: Photons & Spectra

Spectra: disperse light through “prism”, spread it out so we can see each wavelength separately.

Stars generally have absorption line: most of the wavelengths are bright, but a few specific wave-
lengths are dark. To understand this, need Kirchoff’s laws:

• Hot background, cold foreground: absorption lines

• Cold background, hot foreground: emission lines

What matters is what is in front. What is in front of the star? It’s is that it is hotter on the inside than
the outside. So the spectrum of a star is (mostly) a blackbody with some wavelengths absorbed.
These wavelengths were identified before we knew what caused them.

Fraunhofer lines: lines in Sun from things like Na, Ca. But there are also lines from H, He that are
very important.

Cecilia Payne was one of the first people to identify the spectral lines in the Sun (and other stars).
She showed that the elements in the Sun were very different from those on Earth: here we have
almost no free H, but that is the majority of what’s in the Sun.

V.2 Energy Levels for H

proton + electron in Bohr model (approaching proper quantum mechanics, but not quite): “plane-
tary” orbits. Instead of Gravity, Coulomb force:

U =
1

4πε0

e2

r

and we use the Virial theorem again, so E = K+U = −U/2. This would have infinite choices for
r: anything is OK. The Bohr model says that r can only have particular values that are quantized.
What is necessary is that, if you take a de Broglie wavelength, the orbit starts and stops in the same
part of a wave. You can also write this as:

J = mevr = n~

is the angular momentum. ~ = h/2π, so this is quantum mechanical. If you do this, you get
discrete energy levels for n = 1, 2, 3, . . .:

−1

4πε0

e2

2r
= −1

2
mev

2 = −1

2

(n~)2

mer

This can only be true at certain values of r:

r = rn = 4πε0
~2n2

mee2
≈ 0.5 Ån2
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The energy levels associated with this are:

En =
1

n2

−mee
4

2(4πε0~)2
=
−13.6 eV

n2

The constant 13.6 eV is the ionization energy of H, known as a Rydberg. Why does this ionize?
Start at n = 1. How much energy to get to infinitely far away? This would take us to r = ∞, so
n =∞. The difference in energy levels is how much energy it would take:

∆E = E1 − E∞

But since E∞ = 1/∞ = 0, this is just E1 or 13.6 eV.
http://astro.unl.edu/classaction/animations/light/hydrogenatom.html

V.3 Photon & Matter: Spectral Lines

Spectral lines are associated with transitions between energy levels. See in both absorption and
emission.

For example, to excite an atom from n = 1 to n = 2 takes ∆E = hc/λ = E2 −E1 = (−3.4 eV−
(−13.6 eV) = 10.2 eV. THis gives a wavelength of λ = 1216 Å. Lymanα. Sketch Ly, Balmer, Pa,
Brackett. Lyα = 1216 Å, Hα = 6563 Å, Pα = 18, 700 Å, Brα = 40, 500 Å.

Emission lines: hot gas on cool background (neon light).

Absorption lines: cool gas in front of hot background.

Some astronomical objects are primarily spectral line emitters. e.g., planetary nebulae and HII
regions: clouds of hot gas, where most of the emission is just what we’ve described.
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Lecture VI Heat Transfer in Stars

Phillips Chapter 3

Heat (energy) is produced in the center, and somehow it must get to the surface. Two main ways.
Either by random motion or bulk (collective) motion. Random motion can be with electrons/ions
(conduction) or photons (radiative diffusion). Collective motion is rising and falling bubbles (lava
lamp). This is convection and it happens when the T gradient is too steep for the other mechanisms
to work.

VI.2 Heat Transfer by Random Motion

Gas with T = T (x) but not too steep, so that energy flows from hot to cold slowly and everything
stays close to equilibrium.

Particles move in all directions. 1/6 move in x direction with speed v, go l before hitting some-
thing. Overall thermal energy density is u(x).

Look at particles crossing x. Those coming from one side will have different energy to those from
the other side if T is not the same. So energy moves.

Energy transfer per area per time is:

j(x) ≈ 1

6
vu(x− l)− 1

6
vu(x+ l) ≈ −1

3
vl
du

dx

We can manipulate derivatives since u = u(x) and T = T (x) only, to get:

du

dx
=
du

dT

dT

dx
= C

dT

dx

C is heat capacity per unit volume — depends on material. So:

j(x) = −KdT

dx

with K ≈ vlC/3 is the thermal conductivity coefficient. Better calculation uses mfp l̄ and mean
speed v̄.

VI.2.1 Electrons and Ions

For classical electrons: ue = (3/2)nekBT , Ce = (3/2)nekB, and v̄e ≈
√

3kBT/me. If the electron
hits another electron not much happens — they swap energies. It is better to have electron hit an
ion, so that is the mfp we need to use. This is 1/niσi, where σi is the area for that collision.
σi ∼ πr2, where r is the radius where electrostatic energy is ∼ kBT :

Ze2

4πε0r
≈ kBT
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So:

Ke ≈
kB
2π

ne
ni

√
3kBT

me

(
4πε0kBT

Ze2

)2

For ions can do the same, and assume ne = Zni:

Ki =
1

Z2

√
me

mi

Ke

Since Z > 1 and me � mi, Ki � Ke and this shows that ion conduction is not important:
electrons matter.

Overall this only matters in white dwarfs. There the electrons are a degenerate gas with high
conductivity. Need to fix speed to be ∼ √EF and C changes to EF . MFP is also higher. Will do
this in detail later.

VI.2.2 Photons

u = aT 4, C = 4aT 3. SoK = (4/3)cl̄aT 3. Need l̄. At low density and high T , Thomson scattering
l̄ = 1/neσT with

σT =
8π

3

(
e2

4πε0mec2

)2

We can find:
Kγ

Ke

≈
√

3Z
Pγ
Pe

(
mec

2

kBT

)5/2

While Pγ is often less than the gas pressure the temperatures mean that kBT � mec
2, soKγ � Ke.

In more normal regimes, the absorption is more complicated. It becomes dependent on the fre-
quency (energy) of the photon. You cannot conserve energy and momentum in a scattering between
a photon and a single particle, so need at least one other. Generally interact with an electron with
an ion nearby. The electron can be bound (bound-free absorption) or free (free-free absorption).

To do this properly, need to integrate to get average of l̄νCν over the photon frequencies, with
Cν

∂duν
∂T

from the blackbody function. We end up with:

l̄ =

∫
dν l̄νCν
4aT 3

which is the Rosseland mean. The majority of the contribution comes from where ν = 2.8kBT/h
(where Cν is maximum) or where l̄ν is large, so that the material is transparent and a lot of energy
can move.

Overall, we can write:

l̄ =
1

neσe + niσi

with both densities ∝ ρ. So we define l̄ = 1/ρκ with κ the opacity. One use is in the heat flux:

j(x) = −4ac

3

T 3

ρκ

dT

dx
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Calculating κ properly can be difficult.

But averaging together different mechanisms we get:

κ ∝ ρT−3.5

which is a Kramer’s Law opacity. At high enough temperatures we return to electron scattering,
with:

κes =
neσT
ρ

= (1 +X)σT/2mH ≈ 0.02(1 +X) m2 kg−1

MFP varies from 0.07 mm to 8 mm from the center to the outside of the Sun, comparing with
∼ 1 mm for the overall average.

VI.3 Convection

Bulk motion in the presence of external force (gravity). Happens on Earth too. If a blob of gas
rises a bit, the material there might be cooler and denser, so buoyancy will make it continue to rise.
And opposite for falling. This will transport energy efficiently, but only if the material changes
properties in the right way.

Need to worry about the way T varies with x.

VI.3.1 Critical condition for convection

Ideal gas with gravity g. Background has T, P, ρ at x, and T + ∆T, P + ∆P, ρ + ∆ρ at x + ∆x.
Ideal gas law ρ ∝ P/T so:

∆ρ

ρ
=

∆P

P
− ∆T

T

What about our blob? Matches at x, but might not match any more at x + ∆x. Instead it will be
T + δT, P + δP, ρ + δρ. Pressure will become the same on sound-crossing timescale (fast), so
∆P = δP . But there isn’t enough time to transport heat in/out, so it changes adiabatically with
P ∝ ργ and

δρ

ρ
=

1

γ

δP

P

What does buoyancy mean? That means less dense than surrounding, so δρ < ∆ρ. Or

1

γ

δP

P
<

∆P

P
− ∆T

T

With ∆P = δP , convection happens if:

∆T

T
<

(γ − 1)

γ

∆P

P

Or, write in terms of d/dx:
dT

dx
<

(γ − 1)

γ

T

P

dP

dx
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Both gradients are < 0 (T and P decrease with height), so T has to fall faster than P given the
adiabatic index etc.

γ = 5/3 for monatomic gas with 3 DOF. But γ → 1 as more DOF happen. When that occurs
critical gradient becomes less steep.

Also see dP/dx = −gρ(x). So if g is small then it is easier to have convection.

Convection can be quite efficient. As soon as dT/dx reaches the critical value all energy will be
moved by convection and dT/dx will stay at this value. Since we have assumed adiabatic changes,
the gas will have properties that are adiabatic, or isentropic.

VI.4 Temperature Gradients in Stars

Actual stars have dT/dx determined by how energy is flowing.

dL

dr
= 4πr2ε(r)

with ε(r) the energy generated per volume at r. L(r) generally becomes a constant outside the
core.

If radiative diffusion dominates, L(r) = 4πr2j(r), so:

L(r)

4πr2
= − 4acT (r)3

3ρ(r)κ(r)

dT

dr

The better way to think about this is that L(r) is the background. If the energy is transported via
radiation, then: (

dT

dr

)
r

= − 3ρκ

4acT 3

L

4πr2

For the Sun, at 0.4R�, L = L�, T = 5 × 106 K, ρ = 5000 kg m−3, κ = 0.5 m2 kg−1. Gives(
dT
dr

)
r

= −0.03 K m−1. Change in T over mfp (0.4 mm) is very small, ∆T/T = 2 × 10−12, so it
basically is in equilibrium.

Compare to: (
dT

dr

)
c

=
γ − 1

γ

T

P

dP

dr

with dP/dr = −g(r)ρ. Convection dominates in ionization zones or cores of massive stars (oth-
erwise, too much energy would need to be moved).

Ionization Zone? where ionized fraction changes relatively quickly with radius. The fact that
both atoms and ions are present means that a lot of ionization/recombination happens, so energy
can be absorbed by “internal DOF.” Also, κ is large so a very steep T gradient would be needed
for radiation to transport energy.

Sun has convection zone below surface,R = 0.287±0.003R�. This is below “photosphere” where
light is emitted the final time. Convective cells lead to bright/dark formations called granules in
the photosphere.
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Convection often present right near core, where a lot of energy is generated in a volume too small
for radiation to be efficient: g is low, so dP/dr is low.

Look at L(r)/m(r) (power per unit mass within r). Convection if

3ρκ

4acT 3

L(r)

4πr2
=
γ − 1

γ

T

P

Gm(r)ρ

r2

Use Pr = aT 4/3, (
L(r)

m(r)

)
crit

=
γ − 1

γ

16πGc

κ

Pr
P

If L(r)/m(r) below this, radiation is enough. Otherwise need convection.

In particular this happens for massive stars where H burning is via CNO. Very temperature depen-
dent, ∝ T 17. So as T (r) goes down with r, L(r) goes down very rapidly. So only a small region
has fusion but convection is important to move the energy out.

VI.5 WD Cooling

WD end product of non-explosive stellar evolution. Held up by electron degeneracy pressure.
Roughly R⊕ and M�, mostly C and O (that’s all that fusion can do if original mass is < 3M� or
so).

Ions are classical, electrons are quantum (degenerate). Around this is a small thin layer of “nor-
mal” matter. Cooling is via radiation from surface, but the energy gets to the surface via electron
conduction. Electron conduction is very efficient, so most of the interior is effectively at a single
T . Takes a long time (Gyr) to cool because kBT of ions is high and only a little energy can leak
out at a time (high opacity). Since times are Gyr, can use WDs to measure star formation and date
stellar systems.

Model: hot, metal-like (fixed ions, conducting electrons) sphere surrounded by insulating jacket of
ionized gas. T = TI is the same inside because degenerate electrons tranfer heat very effectively.
MFP for electrons is very long (only scatter if available quantum state). Internal energy (3/2)kBTI
from ions. Jacket fixes L. Since electrons are degenerate, radius does not change as it cools since
pressure is P (n) only, not P (n, T ).

Look at outer envelope. Ideal/classical, P = ρkBT/m̄. HSE and radiative diffusion give:

dP

dr
= −GMρ(r)

r2

and
dT

dr
= −3ρ(r)κ(r)

4acT (r)3

L

4πr2

L is final power at the surface since there is no energy generation. m(r)→M since we are worried
about the surface layer with (almost all) of the mass inside. So combine:

dP

dT
=

(
16πacG

3

M

L

)
T 3

κ
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What is κ? Assume Kramer’s law with XHe = 0.9 and the rest in heavy elements. So

κ = 4.34× 1019ρT−3.5 m2 kg−1 = κ0ρT
−3.5

Can put in P for ρ to get κ = (κ0m̄/kB)PT−4.5, so we get:

dP

dT
= C

T 7.5

P

with
C =

16πacGkB
3κ0m̄

M

L

Integrate this through the envelope with P = 0 at T = 0:

P 2

2
= C

T 8.5

8.5

Both P and T increase going inside. When do the electrons start to become degenerate? In the
plasma, 2/3 of particles are electrons (helium). So electrons are 2/3 of the pressure,

ne = (2/3)P/kBT =
2

3kB

√
C

4.25
T 13/4

Quantum when ne ∼ nQ. Highly conducting (isothermal) when ne = 10nQ, then T = TI . So that
will work for the base of the envelope.

10

(
2πmekBTI

h2

)3/2

=
2

3kB

√
C

4.25
T

13/4
I

From this,

TI ≈ 7× 107 K

(
L

M

)2/7

with both L and M in solar units.

Now look at total stored energy

E ≈ 3

2
NkBTI =

3

2

(
M

12mH

)
kBTI

(assume carbon). Eventually ions will form crystal lattice, changing specific heat to 3NkB and
then going lower (but ∝ T 3). But ignoring that, L = −dE/dt. So

dTI
dt

= −α
(

TI
7× 107 K

)7/2

with

α ≈ 2

3kB

(
12mH

M�

)
L� ≈ 6 K/yr

Can get TI(t), and from that L(t), given initial conditions (e.g., 0.4M�, 1L�, TI = 108 K). Cooling
time is∼Gyr. Doing this in detail is hard (neutrinos, onset of degeneracy, solid properties, opacity,
sedimentation, etc.).
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Lecture VII To Make A Star

1. Support against gravity (P from HSE, E from Virial theorem)

2. Source of energy: nuclear

We can exclude all forms of energy besides nuclear fusion from powering the Sun. How does
fusion work?

VII.2 Fusion

What this boils down to is E = mc2: if you can get rid of a bit of mass, you liberate a lot of energy.

atomic unit u = 1.66054× 10−27 kg (mass of 12C/12)

proton mp = 1.6726× 10−27 kg = 1.007u = 938.8 MeV/c2

neutron mn = 1.6749× 10−27 kg = 1.0087u

electron me = 9.1× 10−31 kg = 0.0055u

hydrogen mH = 1.0078u = mp +mn − electrostaticbindingenergy/2

He nucleus mα = 4.002u = 2mp + 2mn − ∆m, with ∆m = 0.03u ∼ 0.7% × (4mH) ≈
28 MeV/c2

So going from 4 protons to 1 He nucleus (α particle) releases 28 MeV. This is the energy released
by fusion.

We can think of the binding energy as the energy released when you form something (a nucleus in
this case), or as the energy that is required to break something up.

1H : Eb = 0

4He : Eb = 28 MeV = 7.08 MeV/nucleon

16O : Eb = 7.97 MeV/nucleon

56Fe : Eb = 8.798 MeV/nucleon

238U : Eb = 7.3 MeV/nucleon

56Fe has the highest binding energy, so it’s the most stable. Elements that are lighter or heavier are
less stable. This means that reactions would naturally squeeze lighter elements together into Fe
(fusion) and break heavier elements apart (fission).
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VII.2.1 Basic Nuclear Physics

1. Binding Energy: A
ZX , with A the number of nucleons, and Z the number of protons. Eb =

(Zmp + (A− Z)mn −mnuc)c
2

2. Strong force: binds nuclei together against Coulomb (electrostatic) repulsion (since protons
are positively charged)

3. A ∼< 56: strong force increases faster when A increases than Coulomb forces, so a larger A
leads to nuclei that are more bound.

4. A ∼> 56: the opposite

So fusion builds nuclei up to Fe, while fission breaks them down.

VII.2.1.1 H→ Fe

This gives about 9 MeV/nucleon. Going from H to He gets 7 (or about 0.7% of mc2). Going to O
gets about 8 (0.8%). Going to Fe gets about 1% of mc2 which is the most that fusion can do.

So for each proton you get ≈ 1%mc2 ∼ 10−12 J (which means that 1 g of H could supply the
annual energy of an american).

Fusion in the Sun: 10−12 J ×M�/mp ∼ 1045 J� GM2
�/R�. tnuc ∼ E/L� ∼ 1011 yr, so the Sun

could shine for that long.

The actual lifespan is about 1010 yr (and it’s lived about half of that) for a few reasons:

• L� increases later in life

• Not all H is burned

• It does not get hot enough to burn all the way to Fe

But it is clear that tnuc � tKH � tdyn
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Lecture VIII The Nucleus

We want to explain the binding energy in m = Zmp + (A−Z)mn−Eb/c2, where the nucleus has
Z protons and A− Z neutrons, for a total number A nucleons.

VIII.2 The Liquid Drop Model

EB ≈ aVA− aSA2/3 − aC
Z(Z − 1)

A1/3
− aA

(A− 2Z)2

A
+ δ(A,Z)

Let’s look at each term:

aVA : this is a volume term, since for constant density nucleons the volume will be ∝ A. This
covers the binding due to the strong force, which is ∝ A

aSA
2/3 : this is a surface term. For a volume ∝ A, the surface area will be ∝ A2/3. It works as

a correction to the volume term since the nucleons near the outside will have fewer other
nucleons to interact with.

aC
Z(Z−1)

A1/3 : this is the Coulomb term, showing the strength of electrostatic repulsion which is
∝ 1/r ∼ 1/A1/3

aA
(A−2Z)2

A
: this is an assymetry term, where nuclei with A ≈ 2Z are more bound

δ(A,Z) : this is a pairing term

Overall this makes stable nuclei with Z ≈ A/2, and says that the most bound nuclei are near
A = 60. It is obviously a simplification, but it can be improved with the addition of a shell model
(like for electrons) and using empirical data to set the various constants.
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Lecture IX Fusion in Stars

Phillips Chapter 4

IX.2 The Physics of Fusion

Force two positively charged ions together. Can fuse and release excess binding energy (as photons
and neutrinos). But it is very hard to force two positive charges together.

The basics are 4×1 H→4 He + 28 MeV, or releasing ∼ 7 MeV/A. But this has some problems.

IX.2.1 Classical Result

Coulomb repulsion is strong. In order to have fusion you have to force together multiple hydrogen
nuclei. These are protons, and are all positively charged. The strong force can only overcome the
repulsion when the protons are very close together: ∼ 1 fm= 10−15 m (for comparison, an electron
orbits at 10−11 m).

The classical (not quantum) solution to this is that protons get close just because of their motion.
They are hot, so they zip around pretty quickly. Sometimes they will approach each other, and this
may happen. Can we tell how much?

The Coulomb potential is: UC = 1
4πε0

e1e2
r

, and energy will be conserved when the protons ap-
proach. So if they are travelling fast far away, as they approach the potential barrier they slow
down:

1

2
mpv

2
∞ + UC(∞) = UC(1 fm)

taking the limiting case that they have used all of their kinetic energy to get close enough. This
gives us a requirement:

1

2
mpv

2
∞ ≥

e2

4πε0(1 fm)

where we can also relate 1
2
mpv

2
∞ = 3

2
kBT . So we need

T ≥ Tclassical =
e2

6kBπε0(1 fm)
∼ 1010 K

This is pretty hot, given that we know Tc ∼ 107 K. So the center of the Sun is not hot enough to
sustain nuclear fusion!?

In fact, Arthur Eddington proposed nuclear energy as a power source, but others thought stars
were not hot enough. Eddington said: “I am aware that many critics consider the stars are not hot
enough. The critics lay themselves open to an obvious retort; we tell them to go and find a hotter
place.”

In the end, Eddington was right! But it needs quantum mechanics.
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IX.2.2 Barrier Penetration

Two nuclei with ZA and ZB, ma and mB. At large distances interaction is Coulomb repulsion with
potential

ZAZBe
2

4πε0r

Again, only at r < rN = 1 fm does the strong force take over and make things attractive. Can
write this as a Coulomb barrier: move closer until total kinetic energy is all in potential energy at
r = rC . This happens at energy:

ZAZBe
2

4πε0rC

Classically, need rC < rN :

EC =
ZAZBe

2

4πε0rN
≈ 1.4ZAZB

(rN/1 fm)
MeV

Compare temperature kBT to EC . Typical central T is 107 K, so kBT ∼ 1 keV which is� 1 MeV.
There is a small tail of the Maxwell-Boltzmann distribution, but the fraction that has enough energy
is ∼ eEC/kBT = e−1000 = 0. So how can fusion happen?

There is a finite chance that a nucleus can penetrate through the barrier to end up at r < rN . A
little bit of quantum mechanics:(

−~2∇2

2mr

+ V (r)

)
ψ(r) = Eψ(r)

with mr = mAmB/(mA + mB). Then can use ψ(r) to get the probability of being at different
radii, |ψ(r)|24πr2.

With the Coulomb + well potential, once in the “forbidden” regime K = E−EC < 0 (outside the
forbidden regime it is sinusoidal). The wave function satisfies

∇2ψ(r) = χ2ψ(r)

with

E = −~2χ2

2mr

+ EC

The solution to this is an exponentially decaying wave function, with

ψ(r) =
eχr

r

if there is no orbital angular momentum (radial orbit). So the probability that it gets to < rN is

|ψ(rN)|24πr2
N

|ψ(rC)|24πr2
C

= |e−χ(rc−rN )|2
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For our purposes, the parameter χ depends on r, so we have to integrate the exponetial over χ(r).
What we get is the probability is:

≈ e−
√
EG/E

with EG the Gamow energy
EG = (παZAZB)22mrc

2

and α = e2/4πε0~c is the fine structure constant.

The effect of this is that particles do not need kBT ∼ EC to undergo fusion. Some small fraction
can penetrate the barrier (tunnel) and fuse. What typically happens is that kBT � EC , so fusion
only happens for a small fraction of nuclei. The rate is effectively controlled by barrier penetration.
For instance, p + p has EG = 493 keV, so probability is e−

√
EG/kBT ≈ e−22 at T = 107 K. This is

small, but a lot larger than e−1000.

IX.2.3 Cross Sections

Just because the particles are close together doesn’t mean that fusion is automatic. Need to deter-
mine cross section. i.e., if a particle goes through a medium with n particles per m3, the probability
that it hits something (reacts) when going ∆x is nσ∆x, with σ the cross section (units of area).
Probability of no reaction is 1 − nσ∆x. So if it travels a full distance x with no reactions, the
probability is the sum of all of the probabilities over ∆x, e−nσx. From this, the mean free path is:

l̄ =

∫ ∞
0

xe−nσxnσdx =
1

nσ

(we used this before). In nuclear physics, typical cross section is barn, 10−28 m2. For fusion

σ(E) =
S(E)

E
e−
√
EG/E

S(E) is for the particular reaction and usually doesn’t change much, except at resonances. To
actually measure these is hard: usually we measure much closer to kBT = EC and extrapolate
down.

IX.2.4 Reaction Rates

Material with nA and nB, fusion cross section σ. B is fixed, but A moves with v. So time between
fusion is τA = 1/nBσv. So overall rate (density of A per time) is RAB = nAnBσv.

Things actually depend on relative speed vr. This has a distribution, P (vr). What we want is:

〈σvr〉 =

∫ ∞
0

dvr σvrP (vr)

which gives things like RAB = nAnB〈σv〉. If A = B (both the same) replace nAnB by n2/2, since
a proton cannot fuse with itself.
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If things are thermal (Maxwell Boltzmann):

P (vr) =

(
mr

2πkBT

)3/2

e−mrv
2
r/2kBT4πv2

r

And then integrate, with E = mrv
2
r/2:

〈σvr〉 =

√
8

πmrk3
BT

3

∫ ∞
0

dE Eσ(E)e−E/kBT

Or,

RAB = nAnB

√
8

πmrk3
BT

3

∫ ∞
0

dE S(E) exp

(
− E

kBT
−
√
EG
E

)
Look at the two factors in the integrand, ignoring S(E). Product has a maximum where

E0 =

(
EGk

2
BT

2

4

)1/3

0 2 4 6 8 10
Energy of Approach E/kBT

Pr
ob

ab
ilit

y 
of

 F
us

io
n

∝ e−E /k BT ∝ e−
√

EG/E

∝ e−E /k BT −
√

EG/E
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Can determine the width of the peak by doing a Taylor expansion around it, to find:

∆ =
4

31/221/3
E

1/6
G (kBT )5/6

Where most fusion takes place around E0 ±∆. There are too competing factors. If the energy of
approach is too low, the probability of barrier penetration is very low. If the energy is too high,
the likelihood of fusion is low. Only in the middle does fusion readily occur. This is called the
“Gamow Peak.” For example, at 2× 107 K and for fusing two protons, E0 = 7.2 keV or 4.2 kBT ,
and ∆/2 = 4.1 keV.

If we assume S(E) is constant we can evaluate it at E0 and do the integral for RAB:

RAB ≈ 6.48× 10−24 nAnB
ArZAZB

S(E0)

(
EG

4kBT

)2/3

e−3(EG/4kBT )1/3 m−3 s−1

where Ar = mr/amu and the units of S(E0) are keV barns.

The strongest effect of changing T comes from the exponential term. As T increases, RAB will go
up a lot. We can take an approximate derivative to see how quickly it increases:

dRAB

dT
≈
(

EG
4kBT

)1/3
RAB

T

which is for proton + deuteron (an important step in making He) dRAB
dT
≈ 4RAB

T
. Which implies

RAB ∝ T 4. This is steep, but other reactions can be even steeper. For instance, proton + carbon is
∝ T 17.
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Lecture X Hydrogen Burning

What are the actual reactions that take place? First fusion is around 106 K, with light elements such
as D and Li. Those are fast and easy, but there are not much of them. Need to turn H into He.

The problem is that to go from 4 protons to a 4He, we need to turn protons to neutrons. This can
generally proceed via interactions involving the weak nuclear force, such as p→ n+e+ +νe. And
weak reactions are (relatively) slow (if see neutrinos, then weak). So how does it work?

X.2 Proton Proton Chain

Worked out by Bethe in 1939. First reaction is

p+ p→ d+ e+ + νe

which is inverse beta decay where the neutron is immediately captured. After this it can take a
number of routes.

p+ p→ d+ e+ + νe
p+ d→3 He + γ

3He +3 He→4 He + 2p 3He +4 He→7 Be + γ
e− +7 Be→6 Li + νe p+7 Be→8 B + γ
p+7 Li→4 He +4 He 8B→8 B∗e+ + νe

8Be∗ →4 He +4 He
Branch I Branch II Branch III

Q = 26.2 MeV Q = 25.2 MeV Q = 19.1 MeV
85% 15% 0.02%

The net energy Q accounts for the mass converted into energy and for the energy released by
annihilating positrons, but not the energy carried away by neutrinos.

The first step is slow (weak force). Then that d is immediately converted into 3He via a reaction
whose S factor is 18 orders of magnitude greater (strong force). Original protons take a long time
to react (9× 109 yr), but d will react in 1 s.

This has a consequence for the deuterium we find on Earth. The equilibrium d in the Sun is tiny,
roughly 10−18 of the p concentration (set by the relative rates). On Earth it is closer to 0.015%. So
it cannot come from stars, as has to be primordial (from big bang).
4He in branches II and III are catalyst: one is returned for every one that is used.

Rate is determined by first reaction. Can combine to get:

εpp = 9.5× 10−37X2
Hρ

2T 4 W m−3

energy per time per volume.
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X.3 CNO Cycle

For stars like the Sun, pp is enough. But as stars go up in mass the luminosity goes up much too
quickly for pp to be doing the work: the central temperatures do not go up very much, but L does.
So what is happening? We need a reaction chain that has a stronger T dependence, and therefore
has a higher Coulomb barrier. This would also explain why it doesn’t operature in lower-mass
stars: they just don’t have enough energy to get over the barrier.

If the barrier is higher, that will come from more protons, which means heavier elements. It cannot
consume those elements since there are not many of them, but it must recycle them.

Makes use of carbon from earlier He burning (previous generation of stars). Uses CNO in a cycle,
but net result is H to He.

p+12 C → 13N + γ
13N → 13C + e+ + νe

p+13 C → 14N + γ

p+14 N → 15O + γ
15O → 15N + e+ + νe

p+15 N → 12C +4 He

Sequence of proton captures and inverse beta decays. Net result is 4p →4 He + 2e+ + 2νe + Q,
with Q = 23.8 MeV. This is the dominant cycle, but others are possible.

The slowest reaction (which determines the rate) is p+14 N→15 O + γ. The mean lifetime of 14N
is 5× 108 yr in the Sun.

But overall the fusion rate is ∝ T 18, so for higher M (higher T ) the rate is faster.

Once a star explodes, some of the 12C that had been made through He burning will be stuck as 13C,
14N, and 15N, especially 14N.

X.4 Solar Neutrinos

How do we know? We measure M , R, L, and Teff . We can get at some properties though compar-
ison with other stars. But can we be certain? Neutrinos tell us what is inside.

Net reaction for Sun:
4p→4 He + 2e+ + 2νe

So every He has 2 neutrinos, and we can relate this to the luminosity through the Q factor:
2L�/Q = 1.86× 1038 s−1.

During escape from the Sun, probability of interaction is nσR�, with n ∼ 1030 m−3 and σ ∼
10−48 m2 the cross section for interaction. So find only ∼ 10−9 will interact. Expect Fν = 6.6 ×
1014 m−2 s−1.
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But these neutrinos carry more information, since different reactions produce neutrinos with dif-
ferent energies. In particular, the majority of the neutrinos come out with low energy, 0.4 MeV,
which is very hard to detect. Easier to detect more energetic neutrinos (> 10 MeV) from
8B→8 Be + e+ + νe.

It is hard to detect neutrinos. If the Sun cannot stop them, how can we? Employ reactions like

νe +37 Cl→37 Ar + e+

with a whole bunch of Cl coming from cleaning fluid. For this, σ = 10−46 m−2, so rate is 6×10−36

per second per Cl atom. Define 1 SNU is as 1 capture per 1036 atoms per second, so expect 6.1
SNU from main reaction. Overall, expect 7.9± 2.6 SNU. But see 2.55± 0.17± 0.18 SNU (based
on 1 interaction per day).

This is only 1/3 what is predicted. Is the Sun broken? Multiple experiments have confirmed this
deficiency. Look at other neutrinos energies, other reactions. Same result.

Look at reactions with other kinds of neutrinos. In particular, charged current:

νe +2 H→ p+ p+ e−

(electron neutrinos only) and neutral current

νx +2 H→ n+ p+ νx

(all types). Needs a large amount of 2H, done in Sudbury Neutrino Observatory with 1000 tons
of heavy water. Find results that agree with standard solar model, confirmed with other experi-
ments at the same time that imply the previous discrepancy is still there. [Kamiokande can record
time/direction of neutrinos, sees that they come from the Sun. ]

What is happening is neutrino oscillations: if neutrinos have (a little) mass, there is a chance they
will oscillate from one type (electron) to another (muon, tau). Because mass differences are small,
length for oscillations is large. Has important implications for cosmology, supernovae, etc. Since
confirmed by other experiments.

X.5 Helium Burning

Once H burning has ceased in a part of the star, it is mostly just He sitting around waiting for things
to get hot/dense enough for fusion to happen. This fusion is very important, since it makes C and
O (18% and 65% of your body; 0.39% and 0.85% of the solar system).

After H burning, the center of the star is He. It contracts, releases gravitational energy into KE.
Half escapes, half into heat. Eventually H burning starts again but in a shell around the core,
making more He.

He burning can start if M > 0.5M� or so, when core is > 108 K and ρ = 105−8 kg m−3.

This dramatically changes the appearance of the star. Increase in T leads to a large increase in the
outer layers. When He burning starts the core expands and cools, shrinking the outer envelope a
bit. Net effect is a dense, burning core and a large extended envelope: a red giant.
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He burning would be easy if there were stable nuclei with mass of 5 or 6 amu. Then would just do
proton capture onto He. But something must happen. Discussed by Salpeter in 1952.

4He +4 He↔8 Be

makes unstable Be nuclei in equilibrium. Some of this then:

4He +8 Be↔12 C∗

make unstable exciting C. Finally,

12C∗ →12 C +

{
2γ
e+ + e−

where the exciting C decays into stable C. The net reaction is then:

4He +4 He +4 He→12 C

with a net energy release of 7.275 MeV. This is called the triple-alpha process. The first two steps
happen in equilibrium, creating and destroying unstable nuclei. To derive the rate we can look at
each step separately.

X.5.1 Production of Be

Be is slightly unstable, since (m8−2m4)c2 = 91.8 keV > 0 (the Be is more massive than two He).
The decay happens with a lifetime of τ = 2.6× 10−16 s. But 91.8 keV is a relatively small amount
of energy compared to the MeV released by fusion.

Moreover, this amount of energy is within the E0 ± ∆/2 window for favorable fusion. EG =
31.6 MeV, so for 1×108 K the window is 81±31 keV, and for 2×108 K it is 132±55 keV. The Be
would tend to decay right away, but if there are enough of them around and the reaction reaches
steady state we can look at the Saha equilibrium:

µA = mAc
2 − kBT ln

(
gAnQ
nA

)
with

nQ =

(
2πmAkBT

h2

)3/2

giving
n8

n2
4

= 23/2

(
h2

2πm4kBT

)3/2

e−∆mc2/kBT

So in a plasma with 2× 108 K, ρ = 108 kg m−3, n4 = ρ/m4 = 1.5× 1034 m−3 (almost all He) but
n8 = 7× 1026 m−3, or 1/2× 107 of the He. The ratio goes down a lot with temperature, reaching
1/2× 109 at 1× 108 K. There is not much Be, but it is enough.
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X.5.2 Production of Excited C

Make 12C∗ in 0+ excited state. Was only hypothesized to explain He burning (by Fred Hoyle).
Need an extra bit of fusion to make sure that stars with 1.2×108 K can burn, and that the resonance
should be at about 300 keV above fusion threshold (i.e., the S(E) factor is not smooth). Resonance
is at 7.65 MeV, so

(m∗12 −m12)c2 = 7.6542 MeV

This is very close to the energy for He + Be, and also close to the energy for 3 He:

(m∗12 −m4 −m8)c2 = 287.7 keV

(m∗12 − 3m4)c2 = 379.5 keV

The 287.7 keV difference is close to the fusion window for gas at> 108 K. So Saha equation again:

n∗12

n4n8

=

(
3

2

)3/2(
h2

2πm4kBT

)3/2

e−∆mc2/kBT

and can relate n8 to n4 from before:

n∗12

n3
4

= 33/2

(
h2

2πm4kBT

)3

e−(m∗12−3m4)c2/kBT

So the He has to go through Be, but it doesn’t stay there, since the rate of production and destruction
depend on the other channels. We could have looked at

3×4 He↔12 C∗

directly.

The concentration of excited C is low, about 3× 1014 m−3 at 2× 108 K

X.5.3 Carbon Production

Most of the reactions happen back the way they came:

3×4 He↔4 He +8 Be↔12 C∗

But some of the excited C can decay to normal C by emitting two gamma-rays or electron/positron
pair, with a time of 1.8 × 10−16 s, releasing 7.65 MeV. This doesn’t really change the equilibrium
concentrate since only ≈ 1/2500 do this. We can look at the rate of carbon production:

dn12

dt
=
n3

4

τ
33/2

(
h2

2πm4kBT

)3

e−(m∗12−3m4)c2/kBT

The physics in here is the decay timescale and the mass difference, both of which have been
measured.
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So
ε3α = (3m4 −m12)c2dn12

dt

As an example, 2× 108 K and 108 kg m−3. So n∗12 = 3× 1014 m−3. dn12/dt = 1.9× 1030 m−3 s
−1,

and ε3α = 2.2 × 1018 W m−3. But this is very temperature sensitive, since the activation energy
379.5 keV � kBT (10 keV). Overall ε3α ∝ T 41.

X.5.4 What Happens to the Carbon

Carbon burning:
4He +12 C→16 O + γ

(which is good for us). Straightforward reaction w/o resonance or unstable meta-state. Then

4He +16 O→20 Ne + γ

Can have additional He captures to make other elements (Ne, Mg, Si), although this doesn’t happen
too much during He burning since the temperature isn’t high enough.

These reactions bypass Li, Be, B. We do not see very much of these, and most of what we do see
comes not from stars but from a cosmic ray hitting a heavy nucleus and splitting it (spallation).

X.5.5 Advanced Burning

Hotter and hotter. Core of C and O builds up (if the star isn’t massive enough, this ends up as WD).
C burning starts at 5× 108 K, with reactions like:

12C +12 C→20 Ne +4 He

(or 23Na or 23Mg). If the star is a little more massive (8–10M�) things can ened here with
O/Ne/Mg WD.

Then Ne burning if > 109 K, making 24Mg. Important next step is

16O +16 O→28 Si +4 He

(> 2 × 109 K) followed by Si burning (3 × 109 K). The reactions mostly involve heavy nuclei +
light particles made from breaking up the heavier ones, gets rather complicated.

This break-up happens when photons have enough energy to split apart nuclei. E.g.,

γ +28 Si→24 Mg +4 He

Just like ionization, but at temperatures 106 times higher.
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All this happens very quickly. And it needs a very massive star to keep going, where everything
happens more quickly than in the Sun. For instance, for a 25M� star:
Stage Timescale T/109 K ρ
H burning 7× 106 yr 0.06 5× 104

He burning 5× 105 yr 0.23 7× 105

C burning 600 yr 0.93 2× 108

Ne burning 1 yr 1.7 4× 109

O burning 6 mo 2.3 1× 1010

Si burning 1 day 4.1 3× 1010

Then things get exciting!
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Lecture XI Stellar Structure

Phillips 5

Put together the different pieces we’ve assembled. For instance, HSE:
dP

dr
= −Gm(r)ρ(r)

r2

with mass defined by:
dm

dr
= 4πr2ρ(r)

Energy transport (radiative):
dT

dr
= − 3

4ac

κ(r)ρ(r)

T (r)3

L(r)

4πr2

and energy from:
dL

dr
= 4πr2ε(r)

These are what we need to make a star. Ignores convection, spherical, equilibrium. But we also
need to know some other bits:

P = P (ρ, T )

κ = κ(ρ, T )

ε = ε(ρ, T )

Look at pressure from classical particles:

ne = (1 +XH)
ρ

2mH

ni = (2XH + 0.5XHe)
ρ

2mH

along with
n = ne + ni = (1 + 3XH + 0.5XHe)

ρ

2mH

so
P = nekBT + nikBT = nkBT

This can become degenerate
P = KNRn

5/3
e → KURn

4/3
e

And radiation pressure:
P =

a

3
T 4

Opacity from electron scattering (higher temp, lower density):

κes = 0.02(1 +XH) m2 kg
−1

or bound-free/free-free:
κ ∝ ρT−3.5

And energy:
εpp = 9.5× 10−37X2

Hρ
2T 4 W m−3
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XI.1.6 Vogt Russell Theorem

The mass and composition (as a function of r) of a star uniquely determine the radius, luminosity,
structure; and then the evolution.

We can say this because the properties of a given layer in a star allow us to integrate the equation
inward, and must match boundary conditions. So for a given set of ingredients, there is only a
single star that can be made.

XI.2 Simple Stellar Models

Want to put all of these together. Make into 4 coupled first-order ODEs P (r), m(r), T (r), L(r).
Need boundary conditions. Some are easy: m(0) = L(0) = 0 (no mass inside that). At the outside,
P (R) and T (R) need to merge into the photosphere which is complicated. We will ignore that for
the moment, assume T (R) = P (R) = 0.

Combine HSE and mass into:
1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ

Second order in P (r), ρ(r). Assume a simple relation between these:

P = Kργ = Kρ(n+1)/n

This is a polytrope with index n, with γ = (n+ 1)/n. So we get:

1

r2

d

dr

(
r2

ρ

d

dr

(
Kρ(n+1)/n

))
= −4πGρ

We can now make our additional boundary conditions ρ(0) = ρc, dρ/dr(0) = 0. This sets the
central density, and says that there is not a cusp of material. The outer boundary comes from
having ρ go to 0, or ρ(R) = 0 and m(R) = M .

These models are overly simple, but can still be useful. Especially before computers. Let us work
a bit on the math. (

n+ 1

n

)
K

r2

d

dr

(
r2ρ(1−n)/ndρ

dr

)
= −4πGρ

Let us simplify the units. ρ(r) = ρc(Dn(r))n, where Dn(r) is a function that goes between 0 and
1. So: (

(n+ 1)

(
Kρ

(1−n)/n
c

4πG

))
1

r2

d

dr

(
r2dDn

dr

)
= −Dn

n

The bit out in front has units of distance squared. So:

λn ≡
(

(n+ 1)

(
Kρ

(1−n)/n
c

4πG

))1/2
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and normalize:
ξ ≡ r

λn

So we get:
1

ξ2

d

dξ

(
ξ2dDn

dξ

)
= −Dn

n

This is the Lane-Emden equation for a polytrope. We have written it in terms of dimensionless
variables Dn(ξ) to make a physics problem into a math problem, but we must be careful to put the
units back in before we give physics results.

Boundary conditions as before, but also stop the integration where Dn(ξ) = 0. This is the first 0
of the function, and defines the outer edge at ξ = ξ1.

To compute the mass:

M = 4π

∫ R

0

dr ρr2 = 4π

∫ ξ1

0

d(λnξ) (λnξ)
2ρcD

n
n = 4πλ3

nρc

∫ ξ1

0

dξ ξ2Dn
n

We don’t necessarily have to solve for Dn and integrate to get this, since we can recognize that
ξ2Dn

n = −d/dξ(ξ2dDn/dξ), so

M = −4πλ3
nρcξ

2
1

dDn

dξ
|ξ1

Numerically this is useful, but there are a few analytic solutions. Namely, n = 0, 1, and 5. For
n = 1 the solution is:

D1(ξ) =
sin ξ

ξ

where we only do it up to the first zero, ξ1 = π. And for n = 5 there is no finite radius:

D5(ξ) =

(
1 +

ξ2

3

)−1/2

with ξ1 =∞. However, the total mass is finite. For n > 5 the mass is infinite.

For adiabatic monatomic gas, γ = 5/3 and n = 1.5. This also works for white dwarfs in some
cases.

n = 3 is useful, since this is what happens for a star in radiative equilibrium. Add radiative and
gas pressure, Pg = ρkBT/m̄ = βP , Pr = aT 4/3 = (1− β)P . Eliminate T in favor of β:

a

3

(
βPm̄

ρkB

)4

= (1− β)P

So from here you can see how P = Kρ4/3 comes out.

ASTRON 400/PHYSICS 903 FALL 2016 56



Astron 400/Physics 903, Fall 2016 Lecture XI.2

XI.2.1 Another Way

Look at the pressure distribution. At the center of the Sun, it is 2 × 1016 Pa, which is about 200
times the average.

Can write pressure gradient:
dP

dr
= −4π

3
Gρ2

cr

near the center with constant density ρc from HSE. Near the outside the total mass becomes con-
stant M :

dP

dr
= −GMρ(r)

r2

Somehow these have to join.
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Radius

Pr
es
su
re
G
ra
di
en
t d
P/
dr

Pressure Gradient in a Clayton Model
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Guess a form:
dP

dr
= −4π

3
Gρ2

cre
−r2/a2

This will roughly conform to our limits above. Not great at large r, but won’t be horrible. Minimum
of gradient is at r = a/

√
2.

Integrate to get:

P (r) =
2π

3
Gρ2

ca
2
(
e−r

2/a2 − e−R2/a2
)

From here, can get ρ, T . Use HSE and mass equation to get:

Gm(r)dm = −4πr4dP

or

G
m2(r)

2
= −4π

∫ r

0

dr′r′
4dP

dr′

and then use the gradient we derived to get:

m(r) =
4πa3

3
ρcΦ

(r
a

)
with

Φ2 (x) = 6

∫ x

0

dx′x′
5
e−x

′2
= 6− 3(x4 + 2x2 + 2)e−x

2

Then:

ρ(r) =
1

4πr2

dm

dr
= ρc

(
x3e−x

2

Φ(x)

)
with x = r/a. To get T need EOS. But if ideal gas . . .. In particular, can expand Φ(x) around
x = 0 to get series expressions for ρ, T near the center.

XI.2.1.1 A Star with a High Central Density

If a � R, ignore e−a2/R2 terms. This when the mass is all near the center. Works OK for Sun,
with a = R�/5.4.

Then

M ≈ 4πρca
3
√

6

3

Can determine ρ̄, ρ(a), m(a), etc. At the center,

Pc ≈
2π

3
Gρ2

ca
2 ≈

( π
36

)1/3

GM2/3ρ4/3
c

So with the pressure at the center we know the density, and the other way. Should work for any
star that is homogeneous and concentrated.
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We can get similar expressions valid for other sorts of models. For instance, polytrope with n = 1.5
(γ = 5/3):

Pc = 0.48GM2/3ρ4/3
c

n = 3:
Pc = 0.36GM2/3ρ4/3

c

Overall, there is an upper bound:

Pc <
(π

6

)1/3

GM2/3ρ4/3
c

And if we have these relations, we can also try to determine Tc (and hence fusion, etc.).

XI.3 Modeling the Sun

Detailed modeling: Pc = 1.65× 1016 Pa, ρc = 9.0× 1014 kg m−3, Tc = 13.7× 106 K (Strömgren).

With our simple model, need ρc, a, R = R�. Also set M = M� and ρc from Strömgren. From
there get a = R�/5.4. Gives Pc = 1.9×1016 Pa, a little high. Get Tc from ideal gas law, 16×106 K.

XI.3.1 Luminosity

Can integrate εpp and also look at L carried by radiation. This is done for early “homogeneous”
Sun: now things are different since burning has been going on for a while.

L� ≈ 8.4× 10−37 WX2
H

∫ R�

0

dr 4πr2ρ(r)2T (r)4 ≈ 1.0× 10−36 Wa3X2
Hρ

2
cT

4
c

Can substitute in, find L� ≈ 5× 1026 W, compared to predicted 3× 1026 W (was a little different
then).

Compare to heat flow. Assume Kramer’s law opacity, κ(r) ≈ κc(1 + 11r2/16a2). Then:

L(r) ≈ 16πσ
T 4
c r

3

κcρca2

(
1− 19r2

16a2

)
≈ 3× 1029 W

r3

R3
�

(
1− 35

r2

R2
�

)
Obviously this fails for r comparable to R�. But our radiative equilibrium solution is really only
valid in this model for r near the core (we did not enforce equilibrium on T (r)). So L(R�/10) ≈
2× 1026 W, which is close.

XI.4 Minimum and Maximum Masses

Most of the stars we know are from 0.1M� to 50M�. Why? Is there anything fundamental that
gives us the scale of M�, and what causes these limits?

Require HSE. From that, we get:

Pc ≈
(π

6

)1/3

GM2/3ρ4/3
c

ASTRON 400/PHYSICS 903 FALL 2016 60



Astron 400/Physics 903, Fall 2016 Lecture XI.4

All this requires is that the star is the same chemically throughout (not precisely true) and that the
mass increases toward the center.

XI.4.1 Minimum Mass

Need central conditions extreme enough to sustain pp burning. Consider a collapsing cloud of
mass M . Kelvin-Helmholtz contraction, so all of energy is from contraction (gravity) not fusion.
Looks like an ideal gas:

Pc =
ρc
m̄
kBTc

The contraction will be slow and close to HSE if the pressure is almost enough to balance the star.
Equating the two pressures:

kBTc ≈
(π

6

)1/3

Gm̄M2/3ρ1/3
c

So Tc ∝ ρ
1/3
c , which goes up during contraction. Contraction will continue until T is enough for

fusion or electrons become degenerate — either way the center will be supported against further
contraction. So it will not be a star if center is degenerate before fusion.

Assume that electrons have become degenerate. Then:

Pc = KNRn
5/3
e + nikBTc ≈ KNR

(
ρc
mH

)5/3

+
ρc
mH

kBTc

Set this equal to our Pc from before:

kBTc ≈
(π

6

)1/3

GmHM
2/3ρ1/3

c −KNR

(
ρc
mH

)2/3

So this is the temperature when the electrons are degenerate but the ions are not. What is the
maximum temperature that will be reached?

kBTc = Aρ1/3
c −Bρ2/3

c
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Can differentiate and find maximum. This is at kBTc = A2/4B, and ρc = (A/2B)3. Or:

kBTc,max ≈
(π

6

)2/3 G2m
8/3
H

4KNR

M4/3

Can then solve for Mmin needed to have Tc ≥ Tignition. For a rough estimate, use Tign = Tc,�/10 =
1.5×106 K. This givesMmin = 0.05M�, which isn’t bad. Real calculations say closer to 0.08M�.

XI.4.2 Maximum Mass

Things get tricky if pressure is from relativistic particles with γ = 4/3 (nearly unstable). Which
will happen if radiation supplies most of the pressure.

Pg =
ρ

m̄
kBTc = βPc

and
Pr =

a

3
T 4
c = (1− β)Pc

where β is the fraction of total pressure supplied by ions and electrons.

Pc =

(
3

a

(1− β)

β4

)1/3(
kBρc
m̄

)4/3

Equate this to pressure needed to support the star and get:

( π
36

)1/3

GM2/3 =

(
3

a

(1− β)

β4

)1/3(
kB
m̄

)4/3

Radiation pressure gets more important as the mass increases.
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When M > 100M�, 1 − β > 0.5 and the star is very unstable. Even > 50M� is very rare, but
then gain these stars do not live for a long time so they are hard to spot.
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XI.4.3 A Fundamental Unit for Stellar Masses

Fine structure constant is measure of EM attraction compared to rest mass. What about the same
for gravity for protons? U = −Gm2

H/r, with r = ~/mHc is the Compton wavelength (reduced).
Find:

αG =
Gm2

H

~c
= 5.9× 10−39

No units. Compare to 1/137 for EM: gravity is much weaker. Can write our minimum mass in
terms of this (using αG to get the quantum pieces):

Mmin ≈ 16

(
kBTign

mec2

)3/4

α
−3/2
G mH ≈ 0.03α

−3/2
G mH

For the max mass do the same, use where β = 0.5.

Mmax ≈ 56α
−3/2
G mH

Overall, we can say:
M∗ = α

−3/2
G mH = 1.85M�

Normal stellar life happens near M∗. For things that are much lower or higher it will not be a star
or will not live stably. Can also say:

N∗ =
M∗
mH

= α
−3/2
G = 2× 1057

is the number of protons in something that can be a star.

XI.5 A Review of Stellar Evolution

XI.5.1 Low-Mass Stars

Main-sequence: core H fusion. If the star is < 0.5M� or so, will never fuse helium. May eventu-
ally become a red giant (degenerate He core, surrounded by H burning shell, surrounded by puffy
envelope) and then a white dwarf, but this can take hundreds of billions of years.

XI.5.2 Middle-Mass Stars

Main sequence lasts for Gyr. Eventually, only He in core. Contracts, increasing pressure and T
but not enough for He to ignite. Becomes degenerate. Outside the core H burns in shell. Envelope
puffs up, becomes red giant. Ascends the RGB.

H fusion continues to produce He. This “falls” into the core, making it contract further. Eventually,
might get He fusion. Since this happens in a degenerate core (whenM < 1.5M� or so), it will start
as an unstable “flash” (raise T does not affect P ), but the flash will take a long time to propagate
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through star so it will not really effect things too much. But extra energy will expand core, making
things non-degenerate evetually. Moves to horizontal branch (hotter and smaller). This is basically
a He-burning main-sequence, but it is much faster since the reaction is hotter and there is less fuel.

Eventually will exhaust He in core. Contracts again, looks a lot like RGB. Call this phase the AGB.
Moves up again, things become somewhat unstable. Pulsations fling off outer layers, lead to PN
and WD.

See: http://www.astronomy.ohio-state.edu/%7Epogge/Lectures/vistas97.html.

XI.5.3 More Massive Stars

Core never becomes degenerate. So do not become much brighter on the RGB — mostly just
become redder. Eventually ignite He, but it is a more gentle process. Move to HB. Exhaust He,
then contract again up AGB. Get rid of outer layers, end up as PN and WD.

XI.5.4 Massive Stars

Keep plowing through fusion, making more and more massive elements.

XI.5.5 Schönberg-Chandrasekhar Limit

When does the main-sequence end? Fusion will stop right in the core when it becomes mostly He.
But the star will still look like a main-sequence star.

If there is no fusion, there is no L generation. So dT/dr = 0, and the core is isothermal. How
large an isothermal core can you have before the star collapses? That is the S-C limit. Once the
collapse occurs, the star changes on K-H timescales (millions of years) instead of nuclear timescale
(billions of years).

Star with M , R. Has a core with Mc, Rc, and volume Vc. Core has Tc. Pc is the pressure on the
core from all of the bits on top of it.

Start with HSE:
dP

dr
= −GM(r)

r2
ρ(r)

Used this before to derive Virial theorem. Multiply both sides by 4πr3, integrate from center to
Rc. More convenient to also use dM(r)/dr = 4πr2ρ(r) and write:

dP

dMr

= −GMr

4πr4

with Mr = M(r). This is 4πr3dP/dMr = −GMr/r. The LHS is:

4πr3 dP

dMr

=
d(4πr3P )

dMr

− 12πr2P
dr

dMr

=
d(4πr3P )

dMr

− 3P

ρ
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using dM(r)/dr = 4πr2ρ(r) again. Integrate up to Mr = Mc:∫ Mc

0

dMr
d(4πr3P )

dMr

−
∫ Mc

0

dMr
3P

ρ
= −

∫ Mr

0

dMr
GMr

r

The first term on the LHS is easy, 4πR3
cPc. For the second term, use ideal gas law, P/ρ = kBT/m̄c

and T = Tc throughout the core. So the integral is 3MckBTc/m̄c = 2Kc where Kc is the kinetic
energy of the core. The RHS is just integrating the gravitational potential energy, so it is Uc.
Therefore we get a version of the Virial theorem:

4πR3
cPc − 2Kc = Uc

where we have stopped the integral part of the way out, which is why there is an additional term.

We then take Uc ≈ −(3/5)GM2
c /Rc and substitute back for Kc to get:

Pc =
3

4πR3
c

(
MckBTc
m̄c

− 1

5

GM2
c

Rc

)
There are two terms: kinetic and gravitational. As the mass increases, the kBTc term would in-
crease the pressure, but the other term would decrease it. The pressure will reach a maximum
for some value of Mc: this is the maximum pressure which sets the maximum amount of mate-
rial the core can support outside. Differentiate and solve for the maximum. So this happens at
Rc = (2/5)GMcm̄c/kBTc with a pressure Pc,max ∼ (kBTc)

4/M2
c m̄

4
c .

But this pressure must support the star, and we know that will be roughly P ∼ GM2/R4 at a
temperature T ∼ GMm̄/R (here m̄ is over the whole star).

So we can find:
M2

R4
∼ T 4

c

M2
c m̄

4
c

∼ M4m̄4

R4

1

M2
c m̄

4
c

Or:
Mc

M
< α

(
m̄

m̄c

)2

where α is some constant. Detailed calculations find α ≈ 0.4, so for m̄c = 2m̄ (He vs. H)
Mc < 0.1M . Also, increasing m̄c has a destabilizing effect.
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Lecture XII White Dwarfs

Phillips 6.1

XII.2 Sirius B

Star Sirius, brightest in the sky. Found that the star had a proper motion that changed with time,
as if from a binary companion. Found companion a while later, Sirius B. From the orbital period,
knew that it has a mass of ∼ 0.8M�. But it was much fainter than Sirius A, ∼ 1/360L�. It can’t
be further away (in an orbit). How to resolve this? Cold?

Found temperature from spectrum, looks “white.” T = 8000 K. This givesR ∼ 19000 km (a factor
of 4 different from the true value). Compare to 700,000 km for the Sun. So much much smaller.

Also saw that spectral lines from Sirius B had a redshift relative to Sirius A, once the orbit was
corrected. Turns out this is due to general relativity: gravitational redshift. Overall, this is a very
small, dense object.

These should be very numerous: the ones that they found first were really nearby, and they are
reasonably faint, so there could be many invisible ones out there. In fact they are the end-state of
most stars.

XII.3 White Dwarf

End of life for a star of ∼M�. We have an inner, isothermal core, mostly of C and O. Surrounded
by burning shell of He. Surrounded by burning shell of H. Surrounded by large, puffy envelope.
This is AGB phase. Characterized by violent mass loss, leading to planetary nebula.

If the star were more massive could ignite C. But < 8M� or so, cannot. So the fuel runs out, the
envelope is ejected, and we are left with what is left.

XII.4 Mass and Central Density

Now call this white dwarf. Starts out hot, but as it cools degeneracy pressure from electrons
becomes more and more important.

In the center, Ye is electron fraction: number of electrons per nucleon. Ye ≈ (1 + XH)/2 (Ye = 1
for H, 1/2 for most other stuff). With this:

ne = Ye
ρc
mH

As degeneracy becomes important:

P = KNRn
5/3
e = KNR

(
Yeρc
mH

)5/3
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Equate to
(
π
36

)1/3
GM2/3ρ

4/3
c (needed to support a star with high central density), get:

ρc ≈
3.1

Y 5
e

(
M

M∗

)2
mH

(h/mec)3

with M∗ defined from before.

What happens when pF c ∼ mec
2? Electrons become relativistic, and we use a different EOS.

Another way to say it is ne > (mec/h)3. Or, ρ > mH(mec/h)3. So what we derived will only be
valid if M < M∗.

Take C/O WD with M = 0.4M�. Predict ρc = 4.6mH(mec/h)3 = 5.4× 108 kg m−3 (compare to
Pt: 2 × 104 kg m−3). Electrons have pF = 0.65mec, or EF = 0.19mec

2. So ignoring relativity is
not a great approximation.

When we include relativity, the central density ends up higher. In particular, ρc goes up faster than
M2. Eventually we get to:

P = KUR

(
Yeρc
mH

)4/3

Equate this to the pressure needed to support the star:

KUR

(
Yeρc
mH

)4/3

=
( π

36

)1/3

GM2/3ρ4/3
c

But how can this be true? LHS and RHS have the same power of ρc. So obviously there are
problems in the math. But is this a real problem?

In fact, we only get a single solution for the mass, which we call the Chandrasekhar mass:

MCh ≈
(

36

π

)1/2(
Ye
mH

)2(
KUR

G

)3/2

≈ 2.3Y 2
e M∗ = 4.3Y 2

e M�

As the mass of a WD becomes larger, the density increases more and more rapidly. When the star
gets to MCh, the density would go to infinity. In reality, there is new physics, but this is a real
change in how the star behaves.

We can write a more general model for a WD. Use full relativistic mass/energy:

ε2 = m2
ec

4 + p2c2

Integrate over phase space to get the pressure, like we did earlier. If we assume things are de-
negerate, occupancy is 1 for p < pF and 0 for p > pF .

P =
8πm4

ec
5

3h3

∫ xF

0

dx
x4

(1 + x)1/2

with x = p/mec. This integration is up to

xF =
pF
mec

=

(
3ne
8π

)1/3
h

mec
=

(
3Yeρc
8πmH

)1/3
h

mec
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From this we get:
P = KURn

4/3
e I(xF )

where I(x) is a function that is 1 for x =∞ (xF � 1) and goes to 4x/5 for x = 0 (xF � 1)

10−1 100 101
10−2

10−1

100

101

x

I(x
)

Can equate this with pressure from before, and find:

M ≈ (I(xF ))3/2MCh

This relates mass to Fermi momentum, which in turn is related to density. Or it relates density to
mass. Solve for ρc
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The density goes up to∞ when M approaches MCh. In fact a more accurate calculation is similar,
but use a polytrope P ∝ ρ4/3 throughout the star. With this, we find

MCh ≈ 5.8Y 2
e M�

This is a fundamental result realized by Chandrasekhar in 1931. Took him a while to pursuade the
rest of the world. A low-mass WD will just cool. But if it has a higher mass the WD stage cannot
happen. We will look at this later.

XII.5 Mass and Radius

Density increases as the mass increases, ρ ∼ M2. But density ρ ∼ M/R3. If these are both true,
then R must decrease with mass. THis is unlike what happens for star (R ∼ M for stars like the
Sun) or planets (balls of rock, R ∼M1/3).

If NR, P ∝ ρ5/3 throughout the star. If this is true, can solve Lane-Emden equation from before,
find 〈ρ〉 = ρc/6. So we can get:

〈ρ〉 ≈ 0.51

Y 5
e

(
M

M∗

)2
mH

(h/mec)3
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and this is M/(4πR3/3), so

R ≈ 0.77Y 5/3
e

(
M∗
M

)1/3

α
−1/2
G

h

mec

So the characteristic size is α−1/2
G

h
mec
≈ 3×107 m (∼ 5R⊕), and the density is∼ mH/(h/mec)

3 ≈
1× 108 kg m−3. Or, for M� and Ye = 0.5,

R ≈ R�
74

(
M�
M

)1/3

This goes down as mass goes up. Strange, but consistent with what we see for various WDs.

Use this together with TEff to get L:

L ≈ 1

742

(
M

M�

)−2/3(
TEff

6000 K

)4

L�

Which agrees with what we find for Sirius B.

Put this together with TEff(t) from cooling. L ∝ T 4
Eff so this cools along a particular track in the

HR diagram. Since it also depends on mass, but the masses don’t change by a very large amount,
the luminosities are close together for a range of WDs (lower limit on M from stellar evolution).

Now look at effect of gravity on photons.

g =
GM

R2
≈ 742

(
M

M�

)5/3
GM�
R2
�

For photons, think about change in energy from potential with effective mass m = hν/c2. So
energy is hν0−GmM/R on the surface, with ν0 determined from the local atomic physics. When
it goes up, needs to overcome potential energy, loses “mass”. Ends up going to r = ∞, with
∆ν = ν − ν0 = −GMν/Rc2. Or, ∆ν/ν = −GM/Rc2 = −∆λ/λ. With M/R relation:

∆λ

λ
≈ 74

(
M

M�

)4/3
GM�
R�

How much is this? ∼ 10−4, or ∼ 0.5 Å for optical light. This is measurable.

XII.5.1 Another Derivation for Chandrasekhar Mass

Applies to both WD and NS.

N fermions in a star, can be electrons or neutrons or whatever. Star has radius R, so n ∼ N/R3

is density of fermions. The volume for each will be ∼ 1/n, and from the uncertainty principle
∆x∆p ∼ ~ get p ∼ ~n1/3. Or,

EF ∼ ~n1/3c ∼ ~cN1/3

R
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The gravitational energy per fermion is:

EG ∼ −
GMmp

R

since all of the mass is in the protons/baryons, i.e., M = Nmp.

Total energy for a fermion is then:

E = EF + EG =
~cN1/3

R
− GNm2

p

R

Stable equilibrium will be at a minimum of E.

When E > 0 (small N ), can decrease E by increasing R. This makes EF smaller, so electrons
become less relativistic, with EF ∼ p2

F ∼ 1/R2. There will be a minimum at a fixed value of R at
a stable equilibrium.

But when N large (E < 0), can make E more negative by making R smaller. E will effectively
get more negative without bound, so there is no stable solution and collapse will occur.

Max N for stability is from setting E = 0:

Nmax ∼
(

~c
Gm2

p

)3/2

= α
−3/2
G = 2× 1057

As we saw before, this is the fundamental number that determines the mass scales.

The instability comes from EF ∼ mc2. From what we have above,

R ∼ ~
mc

(
~c
Gm2

p

)1/2

where we have not specified what the fermion is. So we can do this for electrons (WD) or neutrons
(NS). Which gives the ratio in the radii as ∼ (mp/me). ∼ 5× 106 m for WD, ∼ 3× 103 m for NS.

XII.5.2 What about a Minimum Mass?

As M increases, R decreases and ρc increases until near limit. Then they hit 0 and∞. But at the
other end?

Keep electrons degenerate, for simpicity.

kBT � EF =
1

2me

(
3π2~3ne

)2/3
= 26(Yeρ3)2/3 eV

with ρ3 = ρ/103 kg m−3 is the density of water. Or, T � 3× 105(Yeρ3)2/3 K, and degeneracy will
still dominate. But what breaks down?

We assume free electrons to get P ∝ ρ5/3. But the Coulomb interactions electrons/ions and
electron/electron will start to become important. Compare EF and EC . Take a single box around
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an ion (“Wigner-Seitz cell”) with Z electrons. We have ni = ρ/Amp and ne = Zni. The radius of
the cell is ri, and each electron will have its own little volume rS = Z−1/3ri.

If we use the uncertainty principle for each electron, it has momentum ~/rs. Or, energy
(~/rs)2/2me (NR). Then the total kinetic energy for Z electrons is:

EK ∼ Z

(
~
rs

)2
1

2me

And the Coulumb energy is:

EC ∼ −
Z2e2

ri
= −Z

5/3e2

rs

When rs is very small, |EK | � |EC | and we can ignore Coulomb forces. THis happens for high
density. But when rs is bigger we cannot do that.∣∣∣∣EKEC

∣∣∣∣ ∼ Z
~2

r2
s

1

me

rs
Z5/3e2

= Z−2/3

(
~2

mee2

rs

)
= Z−2/3a0

rs

With a0 the Bohr radius. So when Z2/3rs > a0 Coulomb forces are important, or when:

ρ =
Amp

4πr3
i /3

< ZA
mp

4πa3
0/3
≈ 3ZA× 103 kg m−3

We can define ρatom = mp/(4πa
3
0/3), and the limit is then ρCoul = ZAρatom.

As M drops, P drops and ρ drops. When ρ gets near ρCoul, different physics takes over. We end
up with uncompressed matter, held up by electrostatics. We call this a planet! This is at effectively
constant density, independent of mass. At what mass?

R ∼ Y 5/3
e α

−1/2
G

(
M∗
M

)1/3 ~
mec

So we can write
ρ ∼ 3M

4πY
5/3
e α

−1/2
G

(
M∗
M

)1/3 ~
mec

∼ ρCoul

with ρCoul = ZAmp/(4πa
3
0/3) and a0 = ~/mecα. So

MP ∼ (ZAY 5
e )1/2(α3/2M∗)

with α3/2M∗ ≈ 1.15× 10−3M� ≈MJupiter

ASTRON 400/PHYSICS 903 FALL 2016 74



Astron 400/Physics 903, Fall 2016 Lecture XIII.1

Lecture XIII Core Collapse

Phillips 6.2

Star with > 10M� (or so). Will go through all stages of nuclear burning in < 10 Myr. Eventually
have Si burning making iron at T = 3×109 K, surrounded by shells of lighter elements. Cannot get
energy out of iron via fusion, so core contracts (just like RGB). Stabilized somewhat by degenerate
electrons, but Si burning dumps increasing amounts of stuff on and electrons get increasingly
relativistic. When the core is at MCh ≈ 1.4M�, electrons have become ultra-relativistic and the
core can no longer support itself.

XIII.1.3 Onset of Collapse

During contraction T rises. If makes exothermic reactions possible, then T and pressure rise and
collapse stops. But what if no exothermic reaction is possible? If only endothermic, reduces P ,
makes contraction into collapse.

Possible reactions are photodisintigration of nuclei and electron capture (inverse β decay). Pho-
todisintigration: KE is used to unbind nuclei. Electron capture: KE of electrons is converted into
KE of neutrinos (and lost). These both suck up energy very effectively, turning contraction into
free-fall. At this point ρ ≈ 1012 kg m−3, and free-fall happens with:

τff =

√
3π

32Gρ
≈ 1ms

XIII.1.4 Photodisintigration

T rises enough such that photons have nuclear-scale energies. Takes a tightly-bound Fe nucleus
and makes two or more loosely bound nuclei, absorbing binding energy. This can take many paths,
but as an example:

γ +56 Fe↔ 134He + 4n

equilibrium between iron and helium + neutrons. This takes:

Q = (13m4 + 4m1 −m56)c2 = 124.4 MeV

So 1 kg of Fe can absorb 2 × 1014 J (50 kton of TNT). Use Saha equation to determine relative
fractions:

µ56 = 13µ4 + 4µ1

with

µA = mAc
2 − kBT ln

(
gAnQ,A
nA

)
and

nQ,A =

(
2πmAkBT

h2

)3/2
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which gives:
n13

4 n
4
1

n56

=
g13

4 g
4
1

g56

n13
Q,4n

4
Q,1

nQ,56

e−Q/kBT

The g factors can be complicated, but we will assume g1 = 2, g4 = g56 = 1. From this we get that
roughly 75% of the Fe is dissociated when ρ = 1012 kg m−3 and T = 1010 K.

For higher temperatures still:
γ +4 He↔ 2p+ 2n

Overall, in collapse of 1.4M�, absorb 4× 1044 J in breaking Fe and 1× 1045 J in breaking He, for
a total of Ephoto ≈ 1.4× 1045 J. This is L� × 1011 yr. Easy to see how this could lead to collapse.

XIII.1.5 Electron Captures

Neutron can decay on its own (β decay):

n→ p+ e− + ν̄e

with half-life of 10.25 min. This produces electrons and neutrinos with total energy of (mp −
mn)c2 = 1.3 MeV, so the max electron energy is 1.3 MeV. If electrons with that energy cannot be
produces, neutrons cannot decay. For instance, if all of the low-energy spots are filled by other
electrons (in a dense gas of degenerate electrons with EF > 1.3 MeV) this cannot happen.

Moreover, if electrons with E > 1.3 MeV are around, they can capture onto protons to form
neutrons:

e− + p→ n+ νe

This can happen even if the protons are in nuclei. For instance, neutronization starts when:

e+56 Fe→56 Mn + νe

is favorable, at ρ > 1.2× 1012 kg m−3. This happens when EF = mec
2 + 3.7 MeV. The Mn would

normally decay back in 2.6 hr, but here instead it will capture again to make 56Cr. And so on as the
density goes up past 1013 kg m−3.

This speeds up further when ρ > 1014 kg m−3. Almost all of the energy in neutrinos is lost. So
the pressure support goes away quickly. How much energy? Core has ∼ 1057 electrons, which
could make 1057 neutrinos. Each capture will take an electron with E ≈ 10 MeV, appropriate for
ρ > 2× 1013 kg m−3. So total energy is:

Ecap ≈ 1057 × 10 MeV = 1.6× 1045 J

which is similar to that from photodisintigration. But in this case it is carried from the star in a
burst of neutrinos. If they could get out immediately, the burst would take ∼ms. But in fact when
the core density is > 1014 kg m−3 the mfp becomes comparable to the size of the core, a few km.
They will get out, but it will take a few seconds.
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XIII.1.6 And Then...

The collapse will proceed on the free-fall timescale. What will stop it? It will stop when the bulk
density is comparable to the nuclear density. For a nucleus with A nucleons, R ≈ r0A

1/3 with
r0 = 1.2 fm. So ρnuc = 3mn/4πr

3
0 = 2.3 × 1017 kg m−3. Once we are that this stage we need

new physics (neutron degeneracy, nuclear forces). The collapse will stop when the density is a few
times this as strong nuclear force comes in, and creates a “bounce”. This propels a shock wave
through the material, leading to a supernova.

Supernovae are observed to have 1044 J of KE and 1042 J of optical energy (over the first few years).
Where does this come from? Gravitational binding energy:

EG ∼
GM2

Rcore

= 3× 1046 J

(
M

M�

)2
10 km

R

Which is orders of magnitude more than we see. We only see a small fraction of this, and we
don’t quite know exactly how the energy is partitioned. But this is plenty of energy compared to
photodisintigration or electron capture. Most of the energy in fact comes via neutrinos, either right
during collapse or later, as the neutron star cools. This happens over the diffusion timescale,R2/cl̄,
and each flavor of neutrinos will carry ∼ EG/6.

On Feb 23, 1987, two neutrino detectors recorded excesses. They identify neutrinos via:

ν̄e + p→ n+ e+

and if the positron has enough energy, it will be faster than the local speed of light in water, so it
will emit C̆erenkov radiation. That can be detected. Only ∼ 1 in 1015 neutrinos is expected to be
detected.

Saw about 20 neutrinos over∼ 10 s. Expect that this is the diffusion timescale, which makes sense
if R ≈ 100 km and l̄ = 10−4R. This came from SN 1987A in the LMC, implying an energy of
about (0.3− 0.5)× 1046 J for ν̄e.

Energies of the neutrinos is consistent with TEff ≈ 5 × 1010 K. Compare to internal temperature,
using the mfp:

TEff ≈
(
l̄

R

)1/4

TI

implies an internal temperature of 1011−12 K.
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Lecture XIV Neutron Stars

Phillips 6.3

A NS is born after core-collapse as a hot, degenerate object. Typical internal temperature is
1011−12 K. Cools (primarily via neutrinos) to 109 K in a day and 108 K in 100 yr. Even though
they appear high, are still “cold” in that kBT � EF .

XIV.1.7 Matter inside a NS

Stability of nuclei: peaks near 56Fe. For smaller nuclei, too many nucleons are near the surface, and
for more massive nuclei the Coulomb repulsion matters more (remember the liquid drop model):
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But this only works in isolation. With relativistic electrons present the equilibrium is different.
They have enough energy for inverse beta decay. This turns protons into neutrons, and we end up
with nuclei with many many neutrons (heavier than Fe). For example, with ρ ∼ 1014 kg m−3, we
might have 76Fe and 78Ni.
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This keeps going as the material gets cooler and denser. Eventually, around 4 × 1014 kg m−3, we
get neutron drip. Neutrons leak out of nuclei, and we get a new equilibrium with heavy nuclei,
neutrons, and electrons. We can calculate this OK for ρ < ρnuc = 2.3 × 1017 kg m−3. Beyond
this density we do not understand the many-body interactions that occur, and it gets even more
uncertain beyond 1018 kg m−3 (pions, muons, hyperons, ...).

Why are free neutrons OK? For most neutrons, cannot have beta decay since electrons are blocked
from forming by Pauli exclusion principle: n → p + e− + ν̄e cannot happen freely. This means
that all neutrons with energies below EF (n) will be blocked from decaying if:

EF (n) < EF (p) + EF (e)

since the proton and electron cannot form. But the neutron can decay if

EF (n) > EF (p) + EF (e)

Overall, there will be an equilibrium, and it is characterized by:

EF (n) = EF (p) + EF (e)

(You can also get this by noting that chemical potential µ for T = 0 is just the Fermi energy, and
kBT � EF for T is effectively 0).

So we can have reactions when the Fermi energies balance, with:

n→ p+ e− + ν̄e

p+ e− → n+ νe

happening (note that the neutrinos escape). We use the relation between Fermi momentum and
density:

pF = h

(
3n

8π

)1/3

For n and p, they are NR, so:

EF (n) = mnc
2 +

pF (n)2

2mn

and the same for the protons. Electrons are relativistic, so

EF (e) = pF (e)c

We also require n(e) = n(p) for neutrality. So we get:

hc

(
3np
8π

)1/3

+

(
3np
8π

)1/3
h2

2mp

−
(

3nn
8π

)1/3
h2

2mn

≈ mnc
2 −mpc

2

We can use (mn − mp)c
2 = 1.3 MeV and solve this. For example, at ρ = 2 × 1017 kg m−3,

nn = 1× 1044 m−3 and ne = np = nn/200, so there is 1 proton for 200 neutrons. This is very far
from normal matter.
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XIV.1.8 Size of a NS

Analogous to WD, treat a NS as a uniform fluid of degenerate, NR neutrons. So

nn ≈
ρc
mn

depending on the central density. We can modify the WD equations to work for neutrons, with
Ye → Yn = 1 and me → mn = mp. So

ρc ≈ 3.1

(
M

M∗

)2
mn

(h/mnc)3

Again, the relevant density scale is mn/(h/mnc)
3. Now,

R ≈ 0.77

(
M∗
M

)1/3

α
−1/2
G

h

mnc

So we have α−1/2
G h/mnc as the fundamental scale, which gives about 17 km. As expected, this is

about 2000 times smaller than a WD computed the same way.

However, doing this for a NS properly is much harder. The neutrons will be somewhat relativistic
when M ∼M∗, which we do have (measured masses are 1.1−2.0M� = 0.6−1.1M∗). There are
complicated, many-body interactions that we cannot do well, and other states of matter that might
be important.

Another issue is GR: we cannot use Newtonian gravity for HSE to compute the structure. Compare
GMm/R to mc2, gravitational to rest-mass energy:

GM

Rc2
≈ 0.2

(
M

M∗

)4/3

so GR is important. But we still have a useful estimate.

XIV.1.8.1 Binding Energy

Gravitational binding energy is roughly comparable to that released as neutrinos during core-
collapse.

EB ≈
GM2

R
≈ 0.2

(
M

M∗

)7/3

M∗c
2 = 7× 1046 J

(
M

M∗

)7/3
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XIV.1.9 Interior Structure

Transition Density Degeneracy
(kg m−3) Composition pressure

iron nuclei,
NR electrons electrons

≈ 1× 109 electrons become relativistic
iron nuclei,
relativistic electrons electrons

≈ 1× 1012 neutronization
neutron-rich nuclei,
relativistic electrons electrons

≈ 4× 1014 neutron drip
neutron-rich nuclei,
free neutrons,
relativistic electrons electrons

≈ 4× 1015 neutron degeneracy pressure dominates
neutron-rich nuclei,
free neutrons,
relativistic electrons neutrons

≈ 2× 1017 nuclei dissolve
superfluid neutrons,
superconducting protons,
relativistic electrons neutrons

≈ 4× 1017 pion(?) production
superfluid neutrons,
superconducting protons,
relativistic electrons,
other particles? neutrons

Way down inside crazy stuff happens. For instance, we can get superfluid neutrons: no viscosity
or friction to flowing. Can spin forever. And superconductor: no resistance to current. The inside
can have other particles present at very high densities, like pions:

n→ p+ π−

which can occur at ρ > 2ρnuc (mπ ≈ 300me � mn, so mass is still conserved).

The various layers of a NS are:

1. Crust (500 m): heavy nuclei, either in a “fluid” or “lattice.” This is along with relativistic
degenerate electrons. Mostly Fe at the surface, moving to heavier, more neutron-rich nuclei
further down until neutron drip (4× 1014 kg m−3).

2. Inner crust (1 km): lattice of nuclei, superfluid neutrons, electrons. This goes up to ρnuc,
where the nuclei dissolve and we can’t speak of individual nuclei any more
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3. Interior: superfluid n, with a smaller amount of superconducting p and e (UR, degenerate).

4. Core? Could be or not. Might be some weird state of matter, or just a rather dense bit of the
interior. ρc ≈ 1018 kg m−3.

Draw shells

XIV.1.10 Maximum Mass

Just like in a WD, when the neutrons get too relativistic we have a P ∝ ρ4/3 polytrope which is
unstable. So there is an effective Chandrasekhar limit for neutron stars, although calculating it
precisely is not so easy. We need to worry about the interactions (which we ignored for the WD)
and about GR.

If we just use the WD relations and substitute mn for me (along with Yn = 1), we find Mmax ≈
3.1M∗ = 5.8M�. This is not unreasonable, but a bit high.

What about the complications? Interactions between neutrons are attractive at moderate distances,
but repulsive very close together. So as you squeeze the NS and pile more mass on, the n-n
interactions would tend to make it more stiff and resist collapse. However, if the neutrons can form
other particles (pions, etc.) there is less pressure from degenerate neutrons, and the pressure from
the new particles is small (remember that kBT � EF ). So new particles make it softer. Overall,
the interactions tend to increase the maximum mass of the NS.

GR will have the opposite effect. First, we need to be careful about which “mass” we are dis-
cussing. The gravitational binding energy is comparable to Mc2 (or the rest mass). Just like KE
in special relativity, in GR we need to account for the gravitational energy. Gravity also gets ef-
fectively stronger at very high densities (the gravitational energy creates gravity), which decreases
the maximum mass. We can see this through the TOV equation, which replaces HSE in GR:

dP

dr
= −Gmρ

r2

(1 + P/ρc2)(1 + 4πr3P/mc2)

1− 2Gm/rc2

All forms of energy are counted when adding up the sources of gravity. Both the gravitational field
and the pressure are sources of energy, and they create gravity. So pressure is on both the left and
right sides of this equation. Which means that if you put in more pressure to reduce gravity, it will
end up just creating more gravity!

Solving this for non-interacting neutrons gives 0.7M� for the maximum mass.

Let us look at this for a constant density model, ρ = ρ0 (incompressible, polytrope with n = 0).
The solution to just HSE (Lane-Emden equation) without GR is:

P (r) =
2πG

3
ρ2

0(R2 − r2)

At the center, the pressure is:

Pc = P (0) =
2πG

3
ρ2

0R
2 =

(π
6

)1/3

GM2/3ρ
4/3
0
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This pressure is finite for all masses, so in Newtonian gravity the mass can be whatever you’d like.

In GR, we can also solve the corresponding equation (messier), and find:

P = ρ0c
2

[
(1− 2GMr2/R3c2)1/2 − (1− 2GM/Rc2)1/2

3(1− 2GM/Rc2)1/2 − (1− 2GMr2/R3c2)1/2

]
which gives:

Pc = ρ0c
2

[
1− (1− 2GM/Rc2)1/2

3(1− 2GM/Rc2)1/2 − 1

]
The pressure will only be finite if GM/Rc2 < 4/9. And we can subsitute in for the densities etc.
But let’s write:

ρ0 =
3mn

4πr3
n

as the density of a neutron, with

rn = fn
h

mcc

So rn is the effective radius. h/mnc is the Compton wavelength, and fn is some dimensionless
parameter that allows us to adjust things. For instance, ρnuc = 2.3 × 1017 kg m−3 corresponds to
fn = 0.9. So we can write our condition for a finite central pressure to be:

Mmax =

(
8πfn

9

)3/2

M∗

This is smaller than before, but still M∗ is the important number. And this is for matter that cannot
compress; for real matter the maximum mass will be less, since the pressure needed would be
infinite.

Overall, we are not sure what the maximum mass is. It is somewhere between 2 and 5 M�. We
know that we see NS’s withM = 2M�, and that’s important since it tells us something about what
they are made of inside: they cannot be made of stuff that would have a maximum mass less than
that.
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XIV.1.11 Rotation

Conserve angular momentum. Everything has some. Sun rotates ∼ 1/month.

Go from core (WD) to NS. We have:

Rcore

RNS

≈ mn

me

(
Z

A

)5/3

= 512

for Z/A = 26/56 for iron. This gives us the ratio of sizes. We can then conserve angular momen-
tum (assuming mass is the same), L = Iω with I = CMR2 (C depends on internal structure).

Icoreωcore = INSωNS

which gives

ωNS = ωcore

(
Rcore

RNS

)2

Or, in terms of period P ,

Pcore = Pwd

(
RNS

Rcore

)2

≈ 4× 10−6Pcore
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If we use Pcore = 1350 s for a known WD, we find periods of a few ms for a NS.

How does this compare with the minimum period? Use what we derived before, which can also be
expressed as:

GM

R2
= ω2

maxR

which gives

Pmin =
2π

ωmax

= 2π

(
R3

GM

)1/2

= 0.6 ms

(
M∗
M

)
So as long as the period is > 1 ms, we don’t have to worry about the NS breaking up.

XIV.1.12 Magnetic Field

Just as the angular momentum is conserved, so will be magnetic flux. This is because the material
is a very good conductor. Roughly, πR2B is a constant, so:

BNS ≈ Bcore

(
Rcore

RNS

)2

= 1.3× 1010 T

based on the most extreme WD field of 5 × 104 T (more typical is 10 T, and 2 × 10−4 T for the
Sun). So the B could be really high, although it is usually a little more modest (108 T).
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Lecture XV Pulsars

Neutron stars were predicted in 1934 (neutrons discovered in 1932) and thought to be associated
with SNe, but not seen for > 30 yr.

Jocelyn Bell was looking at radio emission over time. Studying scintillation, or flickering, which
is irregular changes. Saw that there were little blips that appeared regularly, every 1.337 s. This
came from the same part of the sky, which rose at a different time every night (not from Earth).
These are pulsars.

Nature of pulsars was deduced by Tommy Gold. Based on facts:

• Periods of ∼ 1 s common, although the Crab pulsar has P = 33 ms

• Periods are very stable, change by Ṗ ∼ 10−15 s/s

Models:

Binary Star Would need P from orbital period. Can use Kepler’s third law to show that for
M = 1M�, a = 1.6 × 106 m. Compare to R = 7 × 108 m for the Sun, or 5 × 106 m for
Sirius B.

Could be orbiting NSs. However, GR says that orbit should gradually grow closer, which
period is observed to grow longer.

Pulsating Star WDs oscillate with P = 100 − 1000 s. Can show that P ∼ 1/
√
Gρ. If were a

pulsating NS, then would have period of ∼ 10−4 times that of WD (ρ is 108 times higher),
so this is OK, but maybe too short for slow pulsars.

Rotating Star As we saw, can rotate at ∼ 1 ms and be OK for a NS. If were WD, would not
periods of ∼ 10 s at minimum, so can’t work.

Result is that pulsars are rotating NSs.

XV.1.13 Crab Pulsar

Center of Crab SNR, from 1054 AD. See P = 33 ms, with Ṗ = 4.2 × 10−13 s/s. What does this
imply about change in rotational energy? I = 2

5
MR2 for uniform sphere. For NS,

I ≈ 0.24

(
M

M∗

)1/3

α
−5/2
G mn

(
h

mnc

)2

= 2.5× 1038 kg m2

(
M

M∗

)1/3

See Ṗ . ω = 2π/P , so ω̇ = −2πṖ/P 2 = −2.4 × 10−9 s−2 (increase by a ms every 90 yr). Use
Erot = 1

2
Iω2, so identify:

dErot

dt
= Iω

dω

dt
= −4π2I

Ṗ

P 3
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If we take I = 1038I38 kg m2, have 4.6 × 1031 W. But we can also measure the amount of energy
radiated away by the Crab Nebula and find 5× 1031 W. These balance, and the energy of the Crab
Nebula is supplied by the slowing rotation.

Overall, pulsars were found to be rotating neutron stars. We see blips when the “lighthouse” beam
crosses the Earth show animation. The majority of the energy from the spin-down is invisible: the
radio blips are a tiny fraction of the energy.

It is the strong magnetic field that makes this happen.

XV.1.14 Magnetic Dipole Model

Light cylinder: where v to go around is c. We take the magnetic field to be a dipole, B(r) =
B0(r/R)−3. A changing magnet releases electromagnetic power per unit area S (Poynting flux)
∼ cB2/µ0. We can roughly relate the spin-down energy loss Iωω̇ to the Poynting flux through the
light cylinder:

4πR2
LCSLC ≈ Iωω̇

with ω = 2π/P , ω̇ = −2πṖ/P 2. RLC = cP/2π, so SLC = (c/µ0)B2
LC = (c/µ0)B2

0R
6/R2

LC. So
we have:

4πR2
LC

c

µ0

B2
0

R6

R6
LC

= 4πR6 c

µ0

B2
0

(
cP

2π

)−4

∼ R6

µ0

B2
0

c3
P−4 ∼ I

Ṗ

P 3

This gives:

B2
0 ∼

c3µ0I

R6
PṖ

So from the spin period and the rate at which it is slowing down, we can determine what the
magnetic field is!

We can then use this (assuming B =constant) to get P (t). The equation above is a simple ODE.
We assume that the spin-down is constant, and have P (0) = P0. Solve:

dP

dt
=

A

P (t)

With the solution
P (t) =

√
2At+ P 2

0

with

A =
R6B2

0

µ0c3I
= ṖnowPnow

If we assume that Pnow � P0, then P (t) ≈
√

2At. Alternatively,

t =
1

2A

(
P (t)2 − P 2

0

)
We find that the age is τ ≈ P/2/Ṗ , so we also get the age of the system from P and Ṗ . Do this
for the Crab pulsar get 1250 years, which is very close to the true age of about 950 years (since
people saw the supernova).
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P -Ṗ diagram: HR diagram for pulsars. draw. Move through the diagram from upper left to lower
right until you die from low voltage (don’t actually die, just shut off). This takes 107−8 yrs to get
to P = 10 s from a typical starting point of 10 ms. Usually born with 108 T, but there is a range.

Millisecond pulsars: P = 1.56 ms, Ṗ = 1.1 × 10−19 s/s. This gives B = 9 × 104 T, so much
smaller than normal pulsar. And age of 2.3× 108 yr. Cannot get there via normal evolution. Note
that many of these are in binaries. Scenario is that MSPs live/die in in binary as normal PSRs. The
transfer mass, angular momentum. Reborn (recycled) as MSPs.
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Lecture XVI Neutron Star Cooling

They start out very hot, > 1011 K. How does that heat get transported away?

Mostly by neutrinos, especially at the start. T goes to 109−10 K after a day. Neutrinos come from
the interior, so they can be very efficient, but eventually they slow down and photons from the
surface take over. This happens at 108 K, with TEff = 106 K (about what we observe for most
NSs). Neutrinos will dominate for the first 103−5 yr.

XVI.2 Neutrino Cooling

For T < 109 K, cools via neutrino emission from interior. They escape freely. Basic reactions are
Urca:

n→ p+ e− + ν̄e

p+ e− → n+ νe

in equilibrium. Most things stay the same, but neutrinos carry away energy. This happens during
core-collapse too, but degeneracy of the particles slows things down.

In equilibrium
µn = µp + µe

And if degenerate,
EF (n) = EF (p) + EF (e)

We can further use:

EF (n) = mnc
2 +

p2
F (n)

2mn

and the same for p, and
EF (e) = pF (e)c

Since pF (e) depends only on ne, and pF (p) depends on np, pF (e) = pF (p) since ne = np. So we
have:

pF (n)2

2mn

= pF (e)c

(
1 +

pF (p)

2mpc

)
−Q

with Q = 1.3 MeV. But Q will be� the other terms, so:

E ′F (n) =
p2
F (n)

2mn

≈ pF (e)c = EF (e)

where E ′F is the Fermi energy minus the rest mass (the kinetic part). So then:

pF (e) = pF (p)� pF (n)

EF (p)′ � E ′F (n)

During the decay, the only neutrons that can do it are at E ′F (n)± kBT . And to make electrons and
protons, we also need then to have energy E ′F (n) ± kBT , with the neutrino carrying off ∼ kBT .
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But we have said that pF (p) � pF (n). We cannot match the energy (which needs to be near EF )
and the momentum (which needs to be near

√
2mEF ) at the same time. So this cannot happen!

Need to modify this with a bystander particle:

n+N → N + p+ e− + ν̄e

p+ e− +N → N + n+ νe

The N particles make sure that both momentum and energy are conserved.

Put all of the physics together, find Lν ∝ MT 8
9 . Very strong power of T , and the luminosity is

∝ M . This is because all parts of the inside contribute: we are not limited by scattering and the
need to get photons out from the surface.

Connect inside temperature and outside. The outside of the star will have a “normal” atmosphere
with scale-height (∼ kBT/mpg ≈ 1 cm). The inside will be isothermal at TI .

TEff ≈ 10−2T

(
T

109 K

)−1/8

so roughly 10−2T . Like for WDs. And:

Lγ = 4πR2σT 4
Eff ≈ 7× 1029W

(
TEff

107 K

)4

and

Lν ≈ 5× 1032W

(
T

109 K

)8

So Lν starts out much higher when T is high, but as T goes down it will go to lower than Lγ

Total thermal energy: roughly ∝MT 2. So

2TM
dT

dt
∝ −Lγ − Lν
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These temperatures on the surface are ∼ 106 K, so X-rays. By measuring the cooling, can get at
the physics inside. Probably have measured this for NS in Cas A, with age=300 yr. See change
by 80,000 K in 9 years. This is faster than expected, so think that neutrons only recently became
superfluid (when this happens, can get rid of a lot of energy).
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Lecture XVII Magnetars!

Most neutron stars: energy is in the form of heat (when they are young) + rotation:

K =
1

2
IΩ2 = 8× 1043 J = L� × 1010 yr

(usually are brighter, so do not last as long). Pulsars are magnetized, but the magnet is only
important because it gets the rotation energy out. Total luminosity Ė = IΩΩ̇, but what we see
Lradio ∼ 10−4Ė, LX−ray ∼ 10−3Ė, Lγ ∼ 0.1Ė, synchrotron nebula ∼ Ė.

1979: burst of γ-rays from LMC. 1038 W (1012L�) spike, 3 min decay with 8 s pulsations. Now
have seen several “giant flars” plus more numerous (but smaller) bursts (1034 W). Call these objects
Soft Gamma-ray Repeaters. 1990s: X-ray pulsars with P ∼ 10 s. Measure Ṗ , find Ė ∼ 1027 W.
But see L ∼ 1029 W, so LX � Ė. How? Call these Anomalous X-ray Pulsars.

Chris Thompson & Rob Duncan: magnetars (also Paczynski). NS powered by decay of strong B,
B > 1010 T. Arguments:

• B = 3.2× 1015
√
PṖ (like for pulsar) gives > 1010 T

• Bursts are � LEdd. Remember, Eddington limit balances gravity with radiation pressure
assuming pressure from σT :

LEdd =
4πGMmpc

σT
= 1031 W

(
M

M�

)
Does this mean M � M�? No: we see pulsations, so the object must be small (few R�).
Instead, change σ. Strong B:

σ = σT

(
BQED

B

)2

with BQED = 4× 109 T, so 103LEdd means B > 30BQED.

• Also, fireball to produce giant flares would blow itself apart. Strong B helps keep it tied to
the NS surface so that it can rotate around.

XVII.2 Energetics

Sources are young (found in the Galactic plane, some in SNRs that only stay around for 104 yrs).
Total energy ∼ LX×age:

E ∼ 1028 W104 yr ∼ 3× 1040 J ∼
(
B2

2µ0

)(
4π

3
R3

NS

)
So strong B can power what we see.
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XVII.3 Conclusions

AXP, SGR are magnetars: NS with very strong B. Not powered by rotation but by decay of strong
B (e.g., solar flares). Questions:

• How many?

• Why do they form this way?

• How are they different?

• How does the decay happen in detail?
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Lecture XVIII Black Holes

Phillips 6.4

What happens if you add more mass to a NS? There’s no other particle to support it. For > 3M�
or so, cannot resist collapse. The gravitational redshift:

∆λ

λ
=

(
1− 2GM

Rc2

)−1/2

− 1

goes to infinity. What about the escape speed? vesc =
√

2GM/R must be < c. This tells us that:

R > RSchwarzschild ≡
2GM

c2

for an object to not collapse. Or, we can write:

∆λ

λ
=

(
1− RSch

R

)−1/2

− 1

so as R gets close to RSch the redshift approaches ∞. When R = RSch, we have a black hole
(note that this derivation is not correct, but it gives the right answer). Once we squeeze any amount
of mass into the corresponding RSch, we cannot get anything (light, information) out. For 1M�,
RSch = 3 km. Event horizon at RSch. As you fall toward a black hole, the gravity doesn’t bother
you. You don’t feel anything as you pass the event horizon. But the tidal forces will get very strong
and squeeze/stretch you.

We cannot detect black holes directly. Only indirectly. What we see is that gas (or other stuff)
orbits a space that is really small. We can measure the redshift and blueshift on either side of the
BH. If we can prove that it is orbiting in a space that is < RNS and has a mass that it > MNS, we
can say its a black hole.

However, this matter orbits only over a range of radii. For the Earth, as long as the orbit is at> R⊕,
it’s stable (ignore atmosphere). Same for WD and NS. But all BH orbits are not stable.

Consider orbits using the Effective Potential. Motion is a second-order DEQ. So we need 2 con-
stants of the motion (initial conditions). Normally they would be r(0) and v(0) or something like
that. But they don’t have to be. In fact, it’s often easier to write it in terms of conserved quantities
rather than quantities at a specific time. So instead we will use E/m = (1/2)v2 and L/m = vr.

A particle has an orbit defined by angular momentum. If this is 0, will drop straight in. Effective
potential:

V (r) = U(r) +
L2

2m2r2

with L the angular momentum and U(r) the potential. Use this in energy diagram to figure out
orbits. For Newton,

U(r) = −GM
r
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You move in following this until you hit the centrifugal barrier (L2 piece), which makes you orbit
back out. Stable orbits are in a well defined by the potential, can be elliptical or circular. For a
given L, can plot the curve and see where you have circular orbits. These happen at:

rC =
l2

GM

with l = L/m for Newton. Can get this by differentiating:

dV

dr
=
GM

r2
− l2

r3

Set this equal to 0 to find the saddle point.

So for any value of l, have an rc. Turning points are where E = V , defines bound vs. unbound.
For r = rc

V = E = −G
2M2

2l2
= −G

2M2

2v2r2

Or:

v =

√
GM

r

which is a result we could have gotten other ways.

But this changes in GR. If the BH is not spinning (Schwarzschild solution), get:

V (r) =

(−GM
r

+
l2

2r2
− GMl2

c2r3

)
This puts another negative piece on, so the barrier has a finite height. You can come in with some
energy (depending on l) and go over the barrier, and then you will fall all the way in to the center.
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For l = 4.3GM/c.
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For l = 3.8GM/c.

So potentials have no stable circular orbits (valleys), if l is low enough. Look for what the smallest
possible stable circular orbit is. Height of the barrier from differentiating:

dV

dr
=
GM

r2
− l2

r3
+

3GMl2

c2r4

Set this equal to 0, find:

rc = l
cl ±
√
c2l2 − 12G2M2

2GMc
One of these is stable (valley), the other is unstable (peak), and the unstable one is the inner one.
They will be the same when the discriminant vanishes, or l =

√
12GM/c. At this point,

rc = 6GM/c2 = 3RSch

This is known as Innermost Stable Circular Orbit (ISCO): anything that gets inside here will not
be on a circular orbit. And eventually, it will likely fall into the BH.

Can also see that if E is too high, will skip right over the barrier and fall into the BH. This does
not happen in Newton: there, as long as l > 0, the orbit will always stay at r > 0. For a fixed l,
this will happen if E is high. What does that mean? E/m = v2/2 and l = vr, so v = l/r and
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E/m = l2/2r2. So having a high E at a fixed l means that r is small, or that the orbit would come
close to the center. So this makes sense.
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For l =
√

12GM/c.

This matter orbiting around and falling into a BH is what allows us to identify them. See a disk
(outside ISCO) and a jet. BH can be big (center of galaxy, supermassive, 106−9M�) or small
(stellar, microquasar). As the matter falls in, liberates some fraction of the gravitational binding
energy. If the matter comes in at a rate Ṁ , goes from r = ∞ to r = R (if has a surface) or rc (if
BH). Then energy liberated is:

L ∼ GM

R
Ṁ

Maximum this can be is Eddington luminosity: at that point, the pressure from the light would be
enough to blow away any more material from falling in.

Eventually, GR will win, and even orbits that seem stable will not be. Some energy is slowly lost
to gravitational radiation. So things spiral in together. For instance, NS+NS may merge, forming
GRB.

The ISCO changes if the BH is spinning. If matter orbits around the same way as the spin, then
can come in a bit closer. If the other way, needs to stay out farther. So found BHs with matter
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orbiting within 6GM/c2, can say that the BH is spinning.

XVIII.2 Black Hole Scalings

Common when working on relativity to use relativistic units. Instead of SI/mks or cgs, use units
that emphasize the basic scalings.

There are three meaningful numbers for units: length, time, mass. Geometric units have G = c =
1. So we can re-write the Schwarzschild radius:

RSchwarzschild ≡
2GM

c2
→ 2M

This leads to units where M is mass and length and time. Everything ends up as length.

c = 1 connects length and time. So R = x and t = x/c in normal units become R = t = x (in
meters).

Add inG, and you can connect mass too. G/c2 is the conversion factor, and with that we get masses
in terms of lengths. So 1M� = 2×1030 kg becomesGM�/c2 = 1.5 km. ThenRSch = 2M = 3 km
is easy to remember.

We still need constants h (or ~), kB, and ε0. We could set one more of these to 1, and it is common
to set ~ = 1, but we won’t worry about that.

This makes the math a bit easier to do sometimes (removes all of the powers of G, c, etc.). But it
makes it harder to check units, and you often need to put the units/constants back when trying to
measure something physical.

Example: effective potential. It was:

V (r) =

(−GM
r

+
l2

2r2
− GMl2

c2r3

)
If we write it in geometrized units, we get:

V (r) =

(−M
r

+
l2

2r2
− Ml2

r3

)
For a solar-mass object, M = 1.5 km. r will also be in units of length, and in fact it is useful to
write it in terms of M :

V (x) =

(−1

x
+

l2

2M2x2
− l2

M2x3

)
with x = r/M . Angular momentum L has units of mass×velocity×length, or mass×length2/time.
So in geometrized units we just end up with length2, and to get there we need to multiply by
G/c3. But we are actually dealing with l = L/m, which has units of length2/time or length
in geometrized units. And as you can see, it is more useful to look at the problem in terms of
y = l/M . Then we have:

V (x) =

(−1

x
+

y2

2x2
− y2

x3

)
ASTRON 400/PHYSICS 903 FALL 2016 100



Astron 400/Physics 903, Fall 2016 Lecture XIX.2

which is a lot cleaner. We could do the same work we did before to find:

xc = y
y ±

√
y2 − 12

2

for the circular orbits, and that the ISCO is for y =
√

12 with xc = 6.

ASTRON 400/PHYSICS 903 FALL 2016 101



Astron 400/Physics 903, Fall 2016 Lecture XIX.3

Lecture XIX ISM & Star Formation

XIX.2 Interstellar Medium

What is between the star? What goes in to making the stars, and what happens after supernova?

• gas: 99%

• dust: 1%

Like stars, this is mostly H and He.

[Hydrogen is H. When it is atomic, it is H I. When it is an ion, it is H II. When it is a molecule, it
is H2 (confusing).]

Dust causes light to be dimmer and redder. Not a lot of mass, but important effects: we cannot see
a large portion of the Galaxy at optical wavelengths. Need to go to infrared.

XIX.2.1 Gas

This is most of the mass of the ISM, but still only ∼ 10% of the mass of stars. It can have multiple
phases:

• warm vs. cold

• dense vs. diffuse

• atoms vs. molecules

Average is n ∼ 106 m−3 (best vacuum on Earth is 109 m−3). Numbers here are for Milky Way:

Component Volume T n State See via
(K) (m−3)

molecular clouds < 1% 10–20 108−12 H2 molec. lines, em. and abs.
CNM 1–5% 70 3× 107 H H I 21 cm abs
WNM 10–20% 104 106 H H I 21 cm em
WIM 20–50% 104 106 H II Hα
H II regions < 1% 104 108−10 H II Hα
HIM 30–70% 106−7 102−4 H II X-ray

The different phases are roughly at pressure equilibrium: P = nkBT is roughly constant.

Molecular clouds are small and dense: that’s where stars are born.

H II regions surround hot stars (or hot WDs).

The rest takes up the space in between.
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XIX.3 Star Formation

Star formation is not well understood, although we have learned a lot over the last 10 years from
infrared and longer-wavelength observations. That’s because star-formation takes place where the
gas is dense and cold→warm (but not hot), so it radiates primarily in the infrared.

Basic facts:

• In our Galaxy, the overall steady-state rate of star formation (SFR) is ∼ 1M�/yr. As this
goes on, stars of a range of masses are formed.

• Initial Mass Function (IMF): the distribution of stellar masses when they are formed.
Salpeter (1955) was the first to derive an empirical IMF for stars near the Sun. He took
the observed luminosity function (how many stars of a given luminosity) with the mass-
luminosity relation to get the mass function Φ(M). With this, the number of stars with
masses between M and M + dM is Φ(M)dM .

Call the IMF Ψ(M). How does this relate to Φ(M) (the distributio of observed masses)? For
stars that live longer than the Galaxy (τ(M) > τMW for M < M0), all of the stars will still
be present, so Φ(M) = Ψ(M). But for stars that do not live that long (higher mass stars),
the observed number of them will be dimished. We can divide by that ratio τ(M)/τMW to
figure out what factor we need to replace those stars in our counting. Or:

Ψ(M) =

{
Φ(M) τ(M) > τMW

Φ(M)
(
τMW

τ(M)

)
τ(M) < τMW

If we just counted naively, we would underestimate the number of massive stars. Salpeter
found:

Ψ(M) ∝M−2.35

for 0.4M� to 10M�. Modern studies suggest that the IMF is flatter for lower masses
(< 0.5M� or so) and steeper for higher masses, but this is an ongoing area of research.
But this says that many more low-mass stars are formed compared to high-mass stars.

Open questions:

– Is the IMF the same from place-to-place (within a galaxy or between galaxies)?

– Can we predict the IMF from the fundamental theory of star formation (not yet)?

• Sites of SF in our Galaxy: cool molecular clouds. These have T ∼ 10 K, n ∼ 109 m−3, and
R ∼ 5 pc, so M ∼ 103M�. Giant molecular clouds have M ∼ 105M� and R ∼ 20 pc.
In contrast, the density of star is ρ ∼ 103 kg m−3 or n ∼ 1030 m−3. So significant compres-
sion must occur between the ISM, the molecular clouds, and stars. Gravity wins, but it has to
overcome gas pressure, rotation, magnetic fields. This is not easy to do from first principles.
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XIX.4 Jeans Instability

To collapse into a star, gravity must be stronger than pressure (kinetic energy).

U = −f GM
2

R
(f depends on density distribution, f ∼ 1).

K =
3

2
NkBT

Need |U | > K for collapse. Can write this as:

M > MJ =
3kBT

2Gm̄
R

where m̄ is average mass of particle (M = Nm̄). Or

ρ > ρJ =
3

4πM2

(
3kBT

2Gm̄

)3
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or

M > MJ =

(
3

4πρ

)1/2(
3kBT

2Gm̄

)3/2

These are the Jeans mass and density. MJ is ∝ ρ−1/2T 3/2: if T is higher more pressure support,
but if denser than collapse is easier.

When collapse starts, the cloud is near equilibrium. But as the collapse goes on, the gravitational
energy |U | becomes bigger and bigger with respect to K, so the collapse accelerates. In equilib-
rium, Virial theorem says:

2K + U = 0

But when collapsing:
2K < −U

As the collapse starts, the cloud is transparent to radiation: any conversion of gravitational energy
is radiated away. So if any part is hotter it will radiate and heat up other parts. So during the
initial stages of collapse T remains largely constant (isothermal collapse). This means that K
stays constant. But U ∼ −GM/R is increasing in magnitude as R decreases. Eventually, the
collapse would accelerate to near free-fall, with:

τff ∼
1√
Gρ

which is ∼ 103 yr for the dense core of a GMC.

XIX.4.1 Fragmentation

Conditions necessary to collapse: T = 20 K,M = 103M�, needs ρ = 10−22 kg/m3 (n = 105 m−3)
to collapse (not too bad). But for 1M� density needs to be 106 times higher. That is harder.

So want a big cloud to collapse. But does a big cloud make a big star? Generally it breaks up along
the way (fragmentation).

Imagine a collapsing cloud with M > MJ . As it collapses, ρ increases, so the local MJ decreases
(∝ ρ−1/2 if T is constant). So the whole thing cannot collapse as a whole, but breaks up.

This process will stop when the gas becomes opaque, so that the local cooling time is> the free-fall
time. What is the fragment mass MF ? (Rees 1976). Consider fragment with:

M ∼MJ ∼
(
kBT

m̄Gρ

)3/2

ρ

Collapse is with τff ∼ 1/
√
Gρ. In contrast, cooling time is:

τcool ∼
MkBT

m̄L
∼ MkBT

m̄4πR2σT 4

along the lines of the Kelvin-Helmholtz time. Set these equal to find when fragmentation stops:

1√
Gρ

<
MkBT

m̄4πR2σT 4
=

MkBT

m̄4πσT 4(3M/4πρ)2/3
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But we also have M ∼MJ , so can eliminate ρ to find

MF ∼
(

1

4π

(
4π

3

)2/3
)1/2(

kB
m̄

)9/4
T 1/4

G3/2σ1/2

Which simplifies to ∼ 0.002M�. So why aren’t stars that small? Various things likely stop
fragmentation first.

XIX.4.2 Angular Momentum Problem

What about rotation? If a blob of gas is on the equator of a rotating cloud, it will have:

J = ΩR2 = const

(angular momentum per unit of mass, with frequency Ω). Angular momentum is conserved for the
blob. Gravity is a force ∼ GM/R2, while centrifugal forces are∼ J2/R3. So if J is not too small,
as R decreases eventually centrifugal forces will be important. What is J?

Start with a 1M� cloud. n0 ∼ 107 m−3, so ρ0 ∼ 10−20 kg m−3. From this R0 ∼ (3M/4πρ0)1/3 ∼
3× 1016 m ∼ 1 pc.

What is Ω? Galactic rotation has a period of roughly PG ∼ 2 × 108 yr. The outer part of the blob
will be going around the galaxy at a different speed than the inner part, which will lead to Ω > 0.
We can expect:

Ω0 ∼
2π

PG
β ∼ 10−15β s−1

where β < 1 is a constant. From this we get J0 ∼ R2
0Ω0 ∼ 1018βm2 s−1. When will this be

important? When:
GM

R2
∼ J2

R3

or when R ∼ J2/GM ∼ 1016 m. So already at 1 pc it is important, and R� is� this.

How do we get rid of J?

• Break into pieces, and then the internal rotation (bad) is transferred into orbital motion (OK).
This makes binary stars or groups of stars, which we see.

• Outflows from the disk. Just like in quasars, the disk of matter collapsing in to form the star
can launch jets, with help from the magnetic field. This can transport J to∞, and allow the
cloud to collapse.

XIX.4.3 Magnetic Fields

These can also be problematic.

PB ∼
B2

2µ0
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(magnetic pressure = energy density). With interstellar B ∼ 10−10 T, need to redo collapse criteria
including this effect. Complicated, because direction-dependent. And flux-freezing means BR2 ∼
constant.
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Lecture XX H II Regions

Hydrogen is H. When it is atomic, it is H I. When it is an ion, it is H II. When it is a molecule, it is
H2 (confusing).

Consider a newly formed star. it will be embedded in a dense cloud of H gas. The star emits
photons which are energetic enough to ionize H, making H II. How big a bubble of ionized gas
will there be? We call this an H II region.

The star is hot enough (> 104 K) that photons have hν > 13.6 eV:

H I + γ → p+ e−

Take N∗ is the number of photons per second coming from the star with E > 13.6 eV (beyond the
Lyman limit, or λ < 912 Å). Assume each photon hits one atom and is absorbed making an ion.

For every ion (p), there is a chance that it will encounter an e− and recombine:

p+ e− → H I

In equilibrium, this will balance ionization. But no Saha (since this is driven by the star). Instead:

R =
number of recombinations

volume× time

is the recombination rate, determined by the gas properties. This will balance ionization:

RV = N∗

or

R4πr3

3
= N∗

What isR? It depends on the rate at which e− hits p. So it depends on the product of the densities,
R ∝ nenp = αn2

e. Then

r =

(
3N∗

4παn2
e

)1/3

defines the size of the Strömgren sphere. For example, α = α(T ) = 3 × 10−19 m3 s
−1 at 104 K,

α(T ) ∝ T−1/2 is the recombination coefficient, ne ∼ 108 m−3, N∗(O5) = 3× 1049 s−1 gives r of
a few pc.

Hotter or bigger star (higher N∗) gives a bigger region. Denser gas makes it smaller.

If we have multiple stars we can have a bigger region. Or we can have a hot WD and a smaller
region (planetary nebula). In general, the brigher H II regions tell us where massive stars are (in
this galaxy and others).
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Lecture XXI Dust

Obvious as dark patches in the sky (“holes” in the distribution of stars). These are not actually
missing stars, but the light is blocked by dust.

Originally worked out by Trumpler (1930): star cluster has a bunch of stars at the same distance.
These should line up on the main sequence. So we can move them up & down (guessing distances)
until they line up with the model.

Trumper said: d =distance, D =diamter. So the angular size is

θ =
D

d

The angular area will be:

θ2 =
D2

d2
∝ 1

d2

if most clusters are similar.

At the same time, if the luminosity of a star is L, its apparent brightness (flux) is:

F =
L

4πd2
∝ 1

d2

if most clusters are similar.

So if L and D are typical values that don’t depend on each other, we should see:

θ2 ∝ F ∝ 1

d2

We do not know d, but we can measure θ and F directly. Plot these:

• for high θ2 these should have high F , and will be nearby.

• for low θ2 these will have low F and will be more distant. But Trumpler found that the fluxes
were less than that predicted by the model.

There was scatter (since not all clusters are the same) but also a systematic departure.

Further away were dimmer than expected, and these were also redder. Both of which are caused
by dust.

Light from the star comes into the cloud. Red light is preferentially transmitted, bluer light is
reflected and scattered into all directions (like a sunset). Also, absorbed (converted into heat,
which makes dust warm and glow in IR).

In air, color change mostly from Rayleigh scattering:

∝ 1

λ4
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since the scattering objects (molecules) are� λ. With stars, though, the scattering is:

∝ 1

λ

so the scattering cannot be the same stuff. We can infer that it must be ∼ λ in size. We now know
that dust is little balls of C and Si atoms.

In the optical dust makes stars appear dimmer and redder (show on HR diagram). In the infrared,
though, we can see dust directly and use that to map the heating, or see through dust to map the
whole Galaxy.
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Lecture XXII Supernova Explosions

Collapse of iron core of massive star.

1046 J released, which is mostly the gravitational energy before collapse.

Of this:

• 1% goes into the kinetic energy of the explosion (1044 J is 1051 erg, so this is known as 1
foe).

• 0.01% goes into photons

• 99% goes into neutrinos

XXII.1.4 Chemistry

Sun produces mostly He from fusion. Massive stars can produce up to Fe, but still limits (i.e., little
Li produced). How to make the rest? SNe.

Most of this happens through the r-process (rapid). Heavy elements + many neutrons → very
heavy, unstable nuclei. Then decay to something stable (but still heavy).

The s-process (slow) can also occur, but that is mostly in post-main sequence evolution, where
there is repeated n capture then α or β decay.

XXII.1.5 Qualitative

Flings fast, hot gas outward. At the edge of the shock the gas is ∼ 107 K, generating X-rays. It
runs into the ISM with 106 m−3, 104 K.
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Blast wave solution:

1. free expansion (few ×103−4 km s−1, supersonic)

2. Sedov (sweeps up mass comparable to ejecta mass); conserve energy; Derive self-similar
solution

3. radiative/snow-plow: conserve momentum

Show sound-speed of gas, compare to blast-wave speed, estimate time for Sedov solution.

c2
s =

∂P

∂ρ
=
γP

ρ
=
γkBT

m̄

XXII.1.6 Shock Waves

Sketch what happens to a wave disturbance when it starts to go non-linear.

For example, consider the propagation of a finite amplitude sound wave. The speed of propagation
cs is higher at higher temperature (cs ∝

√
T ). A wave has parts with higher and lower pressure,

and through adiabatic equation of state (Pργ =constant) T and ρ are also different when P is
higher (T ∝ ργ−1), so the different parts also have different speeds. Eventually the crest of the
wave (higher ρ and P ) gradually overtakes the trough. When faster moving gas overtakes slower
moving gas, we get a discontinuous change of density and velocity, a shock.

Hydrodynamics: mass conservation + momentum conservation + energy conservation.

So far we have dealt with static (non-moving) fluids. What happens if it moves? Look in 1D.
Imagine box with size ∆x. Stuff comes in, stuff changes, stuff goes out, all in x direction. Stuff
can change with position or time:

stuff = stuff(x, t)

Stuff flowing in/out is a flux of stuff (not just energy). Can write as:

flux of stuff = stuff × v
Comes in with v1, comes out with v2, and it can change in the box:

∂

∂t
stuff =

stuffv1 − stuffv2

∆x

But:
stuffv1 = stuffv(x)

and:
stuffv2 = stuffv(x+ ∆x)

So we can take the limit as ∆x→ 0 and get:

∂

∂t
stuff = − ∂

∂x
(stuffv)
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XXII.1.6.1 Density

If stuff=density (ρ), then:
∂ρ

∂t
+
∂(ρv)

∂x
= 0

We can’t make more stuff (i.e., mass) in the box. So this is basically conservation of mass.

XXII.1.6.2 Momentum

If stuff=momentum (mv), it’s actually again easier to divide by volume of box to get momentum
density ρv.

∂(ρv)

∂t
+
∂(ρv2)

∂x
= 0

We can expand the derivatives:

v
∂

∂t
ρ+ ρ

∂v

∂t
+ v

∂

∂x
ρv + ρv

∂

∂x
v = 0

But the 1st and 3rd terms here are v times the mass conservation law from before, so their sum is
0. Therefore we have:

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= 0

This is most of the way there, but unless make we can make new momentum. How? Change in
momentum per time is known as force. If there is an external force (like pressure) that can change
the momentum. If the pressue is the same everywhere it won’t do anything, but if it pushes more
on one side vs. the other we will have a net force. So the final equation is:

(
∂v

∂t
+ v

∂v

∂x

)
= −1

ρ

∂P

∂x

XXII.1.6.3 Energy

If stuff=energy:
∂(E)

∂t
+
∂(vE)

∂x
= 0

But pressure is energy per volume, so we have to include it too:

∂(E)

∂t
+

∂

∂x
(v(E + P )) = 0

With those three equations we can study shock waves.
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XXII.1.6.4 Shocks

Imagine we have a piston pushing some gas down a tube in 1D. Upstream the material is undis-
turbed. Then a shock wave comes through and changes it. Downstream it has changed. Upstream
parameters ρ1 etc. The piston moves up the tube with speed vp which is the speed of the post-shock
material. The disturbance will propagate with speed vs which is faster.

We can also think of this as fixed in the frame of the shock, with the gas moving. So the upstream
material will flow into the shock with speed v1, and vs = 0. In that frame nothing changes with
time, only position. So ∂/∂t = 0. So we have:

∂

∂x
ρv = 0

ρv
∂

∂x
v = −∂P

∂x

and
∂

∂x
(E + P )v = 0

We can rewrite the second equation as:

∂

∂x
ρv2 +

∂P

∂x
= 0

The shock itself is infinitely thin, and quantities will change very quickly across there. We don’t
look at the differentials. Instead we integrate over the shock and look at the two sides, upstream
(1) vs. downstream (2). We have ρ2 > ρ1, v2 < v1, T2 > T1, P2 > P1. sketch.

v1ρ1 = v2ρ2

P1 + ρ1v
2
1 = P2 + ρ2v

2
2

(E1 + P1)v1 = (E2 + P2)v2

These are known as (Rankine-Hugoniot) Jump Conditions.

However, writing E like this isn’t so useful. Instead we use:

E =
1

2
ρv2 + ρε

where ε is internal energy per mass (say from internal degrees of freedom). We can relate that to
the pressure (which is energy per volume) via:

P = ρ(γ − 1)ε

with γ the adiabatic index of the gas (5/3 for monatomic). So:

(E + P ) =
1

2
ρv2 +

P

(γ − 1)
+ P =

1

2
ρv2 +

γ

γ − 1
P

ASTRON 400/PHYSICS 903 FALL 2016 114



Astron 400/Physics 903, Fall 2016 Lecture XXII.1

So:

v(E + P ) = ρv

(
1

2
v2 +

γ

γ − 1

P

ρ

)
and therefore the energy balance condition can be done as:

ρ1v1

(
1

2
v2

1 +
γ

γ − 1

P1

ρ1

)
= ρ2v2

(
1

2
v2

2 +
γ

γ − 1

P2

ρ2

)
But ρ1v1 = ρ2v2, so we can divide that part out:

v2
1 + 2

γ

γ − 1

P1

ρ1

= v2
2 + 2

γ

γ − 1

P2

ρ2

In a shock, a lot of the initial ordered kinetic energy from the supersonic motion gets converted
into random motion (heat), making the downstream material hot. It converts supersonic to subsonic
motion.

Define Mach number in terms of upstream sound speed:

M =
v1

a1

with a1 is the sound speed, a2
1 = γP/ρ.

In terms of Mach number, jump conditions are now:

ρ2

ρ1

=
v1

v2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

P2

P1

=
ρ2kBT2/m̄2

ρ1kBT1/m̄1

=
2γM2

1 − (γ − 1)

γ + 1

which imply:
T2

T1

=
[(γ − 1)M2

1 + 2][2γM2
1 − (γ − 1)]

(γ + 1)2M2
1

For strong shocks,M� 1:
ρ2

ρ1

=
v1

v2

≈ γ + 1

γ − 1
= 4

So that means we have a factor of 4 increase in density through the shock. But the other quantities
can change more:

P2 ≈
2γ

γ + 1
M2P1 =

3

4
ρ1v

2
1

T2 ≈
2γ(γ − 1)

(γ + 1)2
T1M2 =

3

16

m̄

kB
v2

1

So in the rest-frame of the shock, the post-shock kinetic energy is:

1

2
v2

2 ≈
1

32
v2

1
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and the post-shock thermal energy is:

3

2

kBT2

m̄2

≈ 9

32
v2

1

So roughly half of the pre-shock kinetic energy is converted to thermal energy.

A shock converts supersonic gas into denser, slower moving, higher pressure, subsonic gas.

XXII.1.7 Blast Wave (again)

Blast wave solution:

1. free expansion (few ×103−4 km s−1, supersonic)

2. Sedov (sweeps up mass comparable to ejecta mass): energy driven

3. radiative/snow-plow: momentum driven (radiate away energy, but always conserve momen-
tum)

XXII.1.7.1 Free Expansion

mass of ejecta� swept up mass. Mej ∼ 1M�, and:

1

2
Mejv

2 = 1044 J

gives v ≈ 104 km/s, which means temperatures in the X-ray regime. This expands until it sweeps
up a comparable mass in the ISM with n ∼ 106 m−3 or ρ = 1 × 10−21 kg/m3. Swept up mass is
(4/3)ρISMr

3:

r =

(
3Mej

4πρ

)1/3

≈ 2 pc

XXII.1.7.2 Sedov

Cooling is slow. The shock has swept up a lot of mass, but it can’t get rid of energy through
radiation yet.

We have ρ1 outside the shock, and ρ2 inside. We know that ρ2/ρ1 ≈ 4 since it is a strong shock.

Look at the total energy of the expanding shock wave. It has a radius Rs. The energy is:

E ∼
(

4

3
πR3

sρ1

)
v2
s

(the mass of the swept up stuff times the shock velocity squared). Assume vs ∼ Rs/t. So then we
have:

E ∼ ρ1R
3
s ×R2

st
−2
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ignoring the constants. We assume that the solution always looks the same, but it just scales in
overall size. We call this self-similar. We can then get:

Rs =

(
E

ρ1

)1/5

t2/5

and
vs ∝ t−3/5

In 1950, G.I. Taylor used dimensional analysis to estimate the relationship between the energy
input of an extremely powerful explosion and the growth of the resulting fireball.

Taylor used a declassified photograph of the fireball of the first atomic bomb test to calculate the
yield of the bomb. He arrived at an accurate value of 20 kilotons (a total mass-energy conversion
of about one gram). Taylor’s publication caused some consternation at the time since the yield was
still classified.

We can do the same thing with supernova explosions, looking at the shock wave to estimate the
age and energy yield.

XXII.1.7.3 Radiative Phase

Mv =constant:
4

3
πRs(t)

3ρ1
dRs(t)

dt
= constant

The shock is cooling here (< 106 K) since more of the ions can capture electrons and cool effi-
ciently, and we see more of the light emitted in the optical regime.
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Lecture XXIII Supernova Classification

Based on appearance of spectra:

First decide based on hydrogen (I vs. II). Then check for Si. If Si, then it’s a completely different
type of event (thermonuclear, which we will talk about later). If no Si, then check for He.

There are subsets of Type II based on specific appearance: IIP (plateau), IIn (narrow), IIL (linear).
Some of these are still debated.

For I, we see no H. What does this mean? Ia are seen in all types of galaxies: old and young. But
Ib/Ic are seen mostly in young galaxies with lots of star formation. They point to massive/young
stars. We are pretty sure that they still are core-collapse events, and that they lack hydrogen because
the progenitors were Wolf-Rayet stars: massive stars that expelled their hydrogen envelopes, just
leaving the helium (or lower) layers exposed.

ASTRON 400/PHYSICS 903 FALL 2016 118



Astron 400/Physics 903, Fall 2016 Lecture XXIII.2

XXIII.2 Type Ia

Thought to involve explosion of white dwarf. Not core-collapse of massive star. Some evidence
for this is that they are seen in young and old galaxies: not tied to massive star formation.

Important for cosmology (next semester) since standard(izable) candle.

Somehow the WD explodes. Not sure how:

• Single degenerate: 1 WD + 1 other star. matter accretes onto the WD, pushes it up near the
Chandrasekhar limit. Nuclear fusion ignites. Probably present in some Ia’s, but < 20% (we
don’t see enough progenitor systems, i.e., WD+other star binaries)

• Double degenerate: 2 WDs. They merge, or the less-massive (bigger) WD accretes onto the
more massive (smaller). Much harder to see before merger.

XXIII.2.1 Light Curve

Ia SN is from runaway thermonuclear fusion. The spectrum we see is not from what most of the
fusion products are: they are buried deep within the expanding shell where it is optically thick.
Only later can we see iron-peak elements that were produced.

Fusion makes many massive elements, but they are ultimately not stable. Optical emission is
powered first by:

56
28Ni + e− →56

27 Co + νe + γ

Electron capture with half-life of 6 days. This energy goes into the optically-thick shell. Then this
itself decays:

56
27Co + e− →56

26 Fe + νe + γ

with half-life of 77 days (also spontaneous decay).

1. Ejecta for opaque, expanding sphere

2. Energy comes from radioactive decay of Ni and Co at declining rate

3. Early:

• High opacity: energy goes into KE

• Small L from small, optically-thick shell

4. Pre-maximum:

• Ejecta become more dilute

• Diffusion time comes close to time since explosion

• L increases

ASTRON 400/PHYSICS 903 FALL 2016 119



Astron 400/Physics 903, Fall 2016 Lecture XXIV.2

5. Maximum:

• Energy emitted L keeps increasing while energy produced keeps declining

• “Old” photons leak out

6. Decline:

• L is equal to rate of energy production

• Mostly powered by Co (Ni has decayed)

Measuring the total light emission tells us how much Fe was produced, which we can also look at
from the luminosity at the peak:

LNi ≈ Ṡ(tmax)MNi

Ṡ is the rate of energy generation by radioactive decay:

Ṡ = 7.74× 1036e−t/8.8 day + 1.43× 1036e−t/111 day WM−1
�

This then allows us to estimate how many heavy elements were produced through the universe by
Ia supernovae. The mix of elements for Ia are different than from Type II:

• Ia: Fe peak elements (Fe, Cr, Mn, Co, Ni)

• II (core-collapse): α elements (C + x× α to get Ne, Mg, Si, S, Ar, Ca, Ti)
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Lecture XXIV Stellar Pulsations

In 1595 amateur astronomer say huge changes in brightness from the star o Ceti. Found period of
11 months, named “Mira” (“wonderful”).

In 1784 δ Cephei was found to be variable with smaller changes and period 5 d. Many similar stars
called classical Cepheids are now known.

Many of these were found and cataloged by Henrietta Leavitt at Harvard. Moreover, she discovered
that from all of the Cepheids in the SMC there was a relation between period and luminosity
(SMC means fixed distance): brighter means longer period. This could mean a way to figure
out distances to many distant stars and galaxies (very important to Hubble). This has now been
extensively refined by including near-infrared measurements and additional information to find a
tight period-luminosity relation for Cepheids.

At first many explanations were put forward to explain these stars. Binaries, star-spots, etc. Many
of these were eventually discarded in favor of radial pulsations: the star is breathing. You can see
this by looking at brightness along with temperature and velocity: most of the change in brightness
(∼ R2T 4) is from a change in T , although the size does change as well.

When looking at many types of stars, see similar pulsation behavior across many different lumi-
nosities but all at similar T . This is the instabillity strip: mostly vertical, showing same physics
across a wide range of stars. The different sources in this region each have different names de-
pending on the first one of each type to be discovered. There are also other types of variable stars
which have a different mechanism.

XXIV.2 Physics of Pulsations

Just like with Earth, seismology can tell us a lot about the interior of a star.

First, try to estimate period Π from properties. How long will it take a sound wave to cross the
star? Assume

cs =

√
γP

ρ

is the adiabatic sound speed. We can use HSE as a background condition to find:

P (r) =
2

3
πGρ2(R2 − r2)

which is for a n = 0 polytrope with constant density ρ (obviously just an approximation). So we
can integrate:

Π ≈ 2

∫ R

0

dr
1

cs
=

∫ R

0

dr√
2
3
πγGρ(R2 − r2)

This isn’t fun, but can be done to find:

Π ≈
√

3π

2γGρ
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As before, Π ∝ 1/
√
Gρ, with only the constants out in front to sort out.

If you use this, you find for smaller stars (higher densities) that they should have smaller periods.
This helps explain the period-luminosity relation: since the instability strip is at constant T and
the variation in mass is small, most of the variation along the strip is just in R, so that explains a
variation in ρ and hence Π.

For the pulsations we are talking about here, they are standing waves with radial motion of the gas
(“radial modes”). This can move the whole star at once (fundamental) or have one or more radial
nodes where the gas is not moving (harmonics or overtones). Most stars pulse in the fundemental,
but some do one of the harmonics or even more than one mode.

Think about a variable star as a series of heat engines, one for each layer. They do work when
expanding or contracting depending on PdV . When averaged over a cycle this can be positive (net
work) or negative (absorb energy). If the sum of all layers is positive, the pulsations will grow in
amplitude. But where can this driving happen?

Eddington suggested a “valve” to drive pulsations. Imagine the star has contracted a bit, so it is
smaller and hotter. If the opacity were to increase as this happened, then it would dam up the
energy flowing out, which would push the layers past where they started. Then the layers would
be more transparent and the trapped energy could escape. This is called the κ mechanism (for
opacity).

This is not normally the case. For Kramer’s law, κ ∝ ρ/T 3/5. Since T increases on compression as
well, overall κ goes down when compressed, which would damp pulsations. But there are special
regions/circumstances where this can work.

It happens where H or He is partially ionized. If the gas is neutral or fully ionized, adding energy
(heat) will cause temperature to change, which damps pulsations. But if it is near the transition
from one ionization state to another the energy will just cause a change in the number of ions at a
fixed T (a phase change). So ρ can change without T changing, and the opacity can change in the
right direction.

This happens in H and He partial ionization zones. First is H I→H II or He I→He II or , where
T ∼ 104 K at the location of the zone. Other is He II→He III at T ∼ 4 × 104 K. Just where these
zones are within a star determine if we see pulsations. If star is too hot > 7500 K or so, then they
will be very close to surface with low density and too little mass to make big pulsations. This
determines the “blue edge” of the zone. If the star is too cool you can get convection that damps
pulsations. Most of the actual driving is done by the He II zone.

XXIV.3 Linearized Hydrodynamics

We modeled stars in equilibrium before, and talked about hydrodynamics to model shocks. For
pulsations we can look at linearized equations that are close to but not exactly at equilibrium. Let
us look at a one-zone model: mass of star M is all at central point, with a thin spherical layer at
radius R with mass m. The rest of the star is just massless gas with pressure P . We can take the
hydrodynamics equation for momentum we derived before and re-write as:
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m
d2R

dt2
= −GMm

R2
+ 4πR2P

which is just a form of Newton’s second law. In our linearized model, variables like P (t) will
be P0 + δP (t), with P0 constant and δP (t) small. Then in our work we can ignore things with
multiple powers of δP (t) since they will be even smaller.

So the equilibrium part of this will be:

GmM

R2
0

= 4πR2
0P0

We can write P = P0 + δP , R = R0 + δR and we find:

m
d2(R + δR)

dt2
= − GMm

(R0 + δR)2
+ 4π(R0 + δR)2(P0 + δP )

We can expand this a bit:
1

(R0 + δR)2
≈ 1

R2
0

(
1− 2

δR

R0

)
and keeping only terms linear in a δ we find:

m
d2δR

dt2
= −GmM

R2
0

+
2GMm

R3
0

δR + 4πR2
0P0 + 8πR0PpδR + 4πR2

0δP

We can cancel out the equilibrium piece in the first and third terms on the RHS. So we get:

m
d2δR

dt2
=

2GMm

R3
0

δR + 8πR0P0δR + 4πR2
0δP

Which is good, but we still have too many variables (δP and δR). We can reduce these through an
equation of state. In this case we will assume adiabatic: PV γ = constant. This means no energy
entering or leaving: the pulsations are locked in place.

Since the volume of our model is 4
3
πR3, we have PR3γ = constant. We can take derivatives to

get:
δP

P0

= −3γ
δR

R0

so we can eliminate δP . We can also say that 8πR0P0 = 2GMm/R3
0, which allows us to cancel

the m terms. So we get:
d2(δR)

dt2
= −(3γ − 4)

GM

R3
0

δR

We can recognize this as a differential equation for a harmonic oscillator. If γ > 4/3 then the RHS
will be negative, and the oscillator will oscillate with frequency:

ω2 = (3γ − 4)
GM

R3
0
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From this we find
Π =

2π√
4
3
πGρ0(3γ − 4)

which is very similar to before.

We can also see that if γ . 4/3, then the RHS will be > 0 and the solution will be an exponential.
So the star will grow out of bounds or collapse. This is similar to the stability criterion we derived
before based on the Virial theorem.

To do this properly (of course), we want to run it on a computer.

XXIV.4 Will It Propagate?

Another question we can ask is what ranges of frequencies will propagate in what types of stars.
There is an analogy to seismic waves in the Earth.

Consider a layer of the atmosphere between r and r+dr with density ρ(r). At r the acceleration of
gravity is g = GM/r2, so the weight of the layer is gρ(r)dr. If the weight is equal to the pressure
gradient P (r) − P (r + dr) then the layer is in HSE. In this case if it is then ρ(r) = ρ(0)e−r/H ,
where H is the scale-height, H = kBT/m̄g.

If a pressure wave is propagating radially, it will displace the layer. This will lead to small changes
in ρ and P , denoted by ρ′(r, t) − ρ(r) and P ′(r, t) − P (r). This is similar to the δρ and δP that
we considered before. Let ξ(r, t) = δR be the displacement at t for the particles at r. So for the
particles at r + dr the displacement will be:

ξ(r + dr, t) = ξ(r, t) +
∂ξ

∂r
dr

So if a particle started at t in a layer of thickness dr, it is not in a layer of thickness (1 +∂ξ/∂r)dx,
so this thickness can change fractionally by ∂ξ/∂r.

If the thickness changes, then the density decreases. For infinitesmal changes we can relate these
by:

δρ

ρ0

= −∂ξ
∂r

If no heat energy is added or taken away from the layer (adiabatic), then we can also say:

δP

P0

= γ
δρ

ρ0

So we now need to check the forces, going back to Newton’s second law:

ρ
∂2ξ

∂t2
= − ∂

∂r
δP

which is very similar to the version we had before, but now written in terms of density ρ instead of
mass m.
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We combine these equations to write:

∂2ξ

∂t2
= c2

s

∂2ξ

∂r2
− c2

s

H

∂ξ

∂r

with cs =
√
γP/ρ as usual.

So if H →∞ (uniform density), then we just have a wave equation for a propagating sound wave.
Any wave can propagate.

But with finite H , we can still look for oscillatory solutions with angular frequency ω. We assume
that the energy density of the wave ρω2ξ/2, will be constant, so we guess:

ξ(r, t) =
Ξ(r)√
ρ(r)

eiωt

(the assumption informs the denominator). From this we get a differential equation for Ξ(r):

d2Ξ

dr2
+
ω2 − ω2

c

c2
s

Ξ = 0

with ωc = cs/2H is the cutoff frequency.

So we can get a solution Ξ(r) = Ae−ikr with wavenumber:

k = ±
√
ω2 − ω2

c

c2
s

So we can find k > 0 which means waves moving upward, we have two solution types:

• ω > ωc:

Reξ(r, t) =
A√
ρ(r)

cos(ωt− kr)

• ω < ωc:

Reξ(r, t) =
A√
ρ(r)

e−χr cosωt

with k =
√

(ω2 − ω2
c )/c

2
s and χ =

√
(ω2

c − ω2)/c2
s.

So in the first case the wave propagates upward with growing amplitude (since ρ(r) is decreasing)
but constant energy density. But in the second case the oscillation is killed by the e−χr exponential:
the wave is evanescent.

So we have a cutoff frequency ωc = cs/2H , which is the minimum frequency for a pressure wave
to propagate in an isothermal atmosphere. Since cs =

√
γP/ρ =

√
γkBT/m̄ and H = kBT/m̄g,

can expect that ωc ∝ 1/g
√
T . Which means that higher up (g and T decrease) ωc increases and

fewer waves can propagate.
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We could do a more complicated version and find:

ω2
c =

c2
s

4H2

(
1− 2

dH

dr

)
if the scaleheight (which can be defined even in a non-isothermal atmosphere) changes with radius.
Similar analyses can be done for other kinds of waves. For instance, we considered pressure to
be the restoring force here. But could also have gravity be the restoring force, and then we have
gravity waves which behave differently (opposite of convection).

Overall this leads to behaviors where waves can reflect, dissipate, refract, etc. We have to consider
modes that are non-radial as well.
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Lecture XXV Telescopes

Why do we use telescopes? How big a telescope do you need?

photons come at some rate: source has a flux density Fλ in J/s/m2/Å. To get rate of photons:

Fλ ×
telescope area

photon energy
× filter width× efficiency

gives N (photons/s). Number detected is N×time:

n = Fλ
A

hc/λ
∆λ∆tη

e.g., magnitude 20 (faint for eyes, not for telescopes) star: Fλ = 3.6 × 10−20W m−2 Å
−1

(by eye
can see mag= 6, so this is 10−(20−6)/2.5 = 2.5× 10−6 times as bright). Use:

• λ = 500 nm, so hc/λ = 4× 10−19 J

• diameter D = 10 m, so area A = 78 m2

• efficiency η = 20%

• width ∆λ = 1000 Å

gives 1.4× 103 photons/s. How long do we need to observe for? How many seconds are enough?

XXV.2 Poisson Statistics

for counting

expect r events/s, wait t seconds. So we expect rt = n events (cars, raindrops, people, etc.). How
many actually come? Probability that we see m when expect n:

e−nnm

m!

• P (0) = e−n

• P (1) = ne−n

• P (2) = n2e−n/2

sketch.

Expected number is m = n, but we often get more or less. What is important here is width: we
don’t always see exactly as many as we expect, but we want to know how close we will come
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on average. In general, 68% of the time we see somewhere in n ± √n (this is 1-σ, central limit
theorem, n� 1). 95% of the time we see n± 2

√
n. 99.7% of the time we see n± 3

√
n.

So if we want to be sure. . .

We want to see enough photons that we can be sure that there is something real there. Usually we
say > 3σ confidence, so only wrong 1 time in 1000. n/

√
n = 3, so n > 9. That means we need 9

photons per exposure, so we can have ∆t = 6 ms (as I said, this is very easy for a telescope).

But objects can be a lot fainter (27th mag), can have background noise, can have lower spectral
width (spectra).

XXV.3 Other Wavelengths

Optical observing: light behaves mostly like a particle. And we can do it from the ground. Does
this change at other wavelengths?

XXV.3.1 Coherence

Consider number of photons in a single coherence cell:

δ ≈ ∆ν

(
Fν
hν

)
∆τAc

with ∆τ the coherence time, ∆ν the coherence bandwidth, and Ac the coherence area. Based on
the uncertainty principle ∆τ∆ν > 1 and Ac ≈ λ2 = (c/ν)2, so we get:

δ ≈ Fν
hν

( c
ν

)2

= c2 Fν
hν3

From a blackbody,

Fν =
2hν3/c2

ehν/kT − 1

So
δ ∼ 2

ehν/kT − 1

For the Sun at T = 6000 K, at optical wavelengths λ = 500 nm we find δ = 0.02. This is� 1, so
it behaves like a particle.

At radio wavelenghts λ = 1 m, δ = 8× 105 � 1 so it behaves like a wave. δ = 1 at a wavelength
of 2µm.

XXV.4 Radio Telescopes

λ > 1 mm or so, can know phase of wave. Atmosphere is transparent up to wavelengths of 10 m
(beyond that is blocked by the ionosphere).

Do we need dark skies? No: need free from interference:
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• 90–100 MHz: λ = 3 m, FM band

• 1 GHz (30 cm): WiFi, phones, microwaves, etc.

RFI. Better in valley than on mountain.

Telescopes can be anything from “light buckets” to coat hangars. Need a lot of area.

The surface needs to be smooth to < λ/4. Optical: 100 nm (polished glass, heavy & expensive).
Radio: 1 cm (chicken wire).

So we can make things much bigger, which is good since sources are faint.

D up to 300 m (Arecibo). To detect, no longer look at individual photons, but treat like a wave.

XXV.5 Seeing

Optical: resolution > 1′′ by seeing: turbulence in the atmosphere. To do better: go to top of
mountain, go to space (expensive), correct for turbulence (hard). Last is adaptive optics. Use laser
guide stars: make a (fake) perfect star, then see how it gets distorted. Can compute how to undo
that.

XXV.6 Resolution

Diffraction limit. We can only see things that are bigger than λ/D. In the optical this is limited
in any case to > 1′′. compare to Arecibo: 49′′ at 6 cm, so much worse. And we can’t make a dish
(much) bigger. But luckily we don’t need to:

use multiple dishes (interferometer). Then resolution is λ/B where B � D. Need to combine as
a wave (maintain phase). Area (signal-to-noise) limited by D (or area= N × D2), but resolution
from B.

• Very Large Array: 27 dishes, D = 25 m each. B up to 30 km, so total A is 1/9 Arecibo by θ
down to 1′′ or better

• Very Long Baseline Array: 10 dishes, 25 m, B up to continent (8000 km using islands).
θ = 1 mas

Do interferometers work at other wavelengths? Yes, but it’s hard.

• IR: Keck, VLT, some others. Up to 4 telescopes, for specialized projects, within a few 10’s
of m. Need to know spacing between telescopes to λ/4 which is very hard.

• Others: eventually

• lion at 10 km: 100′′

• movie screen at the Moon: 0.01′′
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XXV.7 Infrared

targets: warm things. dusty things (blocks optical light, re-emits as IR). Proto-stars, star-forming
galaxies, gas clouds.

λ < 5µm from ground. After that atmosphere absorbs, need to go to space. Better from high
mountain in any case.

Issues: Wien displacement, peak of BB in the IR from anything warm (300 K is 10µm). So
telescopes, people, sky all make “noise.” Solution is to make the whole telescope cold, ideally in
space.

XXV.8 UV/X-ray

Targets: hot thigs. WD, BH, NS.

atmosphere blocks so we mostly need to go to space. X-rays are even harder: cannot make a mirror
to focus the light. Have to use grazing incidence or other tricks.

XXV.9 Astronomy Without Photons

neutrinos, cosmic rays, gravitational waves. All hard, in infancy.

ν and CR: indirect detection. e.g., ICECUBE. 1 km3 of ice at south pole. strings of light detectors.
When ν passes through, mostly goes on without interacting. Occasionally hits proton, generates
e or µ. When it does they will be traveling faster than local c (not c in vacuum). This makes
Cerenkov light, or a blue flash (sort of like a shock wave).
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Lecture XXVI Extra Solar Planets

Real revolution since 1995.

XXVI.2 How To Find Them?

XXVI.2.1 Can we see them directly?

Reflected light: fraction of the star’s light intercepted by planet is

πR2
p

4πa2
≈ 10−8

( a

1 AU

)−2

This is not very much. It isn’t that planets are so faint, but that the stars are so much brighter and
so close.

Planets are also warm, so they emit their own thermal radiation:

πR2
pT

4
p

πR2
sT

4
s

∼ 10−6

All this is done at an angular separation:

0.1 arcsec
( a

1 AU

)
at a distance of 10 pc. But this has been done, and better instruments are making it easier.

XXVI.2.2 Radial Velocities

The main method, and the most secure, although Kepler is changing that.

∆v = 30 m/s
( a

1 AU

)−1/2
(
Mp

MJ

)
Can get down to precisions of 30 cm/s, so can find small planets. Different planets are sinusoids
of different amplitudes/periods/phases, so can find multiple planets (Fourier analysis).

However, there is a question of unknown inclination.

XXVI.2.3 Astrometry

See the wobble of a star back and forth, across the sky not along the line-of-sight (RV).

∆θ ∼ 0.1 mas
( a

1 AU

)(Mp

MJ

)(
d

10 pc

)−1

unlike the others, this depends on d a lot. This has not really been useful yet.
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XXVI.2.4 Transits

This is the Kepler revolution. See light blocked by the planet.

Depth is:
πR2

p

πR2
s

∼ 0.01

(only if edge-on). The depth, length of an eclipse tell you about the radius of the star. If you
can also measure the RV curve you can get the mass, and figure out mass and radius and hence
composition.

Chance of transit:

∼ Rs

a
∼ 0.05

(
0.1 AU

a

)
XXVI.3 Properties

Various databases, apps. exoplanets.eu

Large range in mass. Easier to detect high M , up to 10MJ . Getting lower all the time, N ∝ 1/M .

In periods, at the short end orbits are very close, a few days (easier to detect): makes hot Jupiters.

long end is limited by length of experiment, pushing to years.

see circular (e = 0), especially at low a (circularized by tides). But at higher a can be eccentric.

XXVI.3.1 Hot Jupiters

Temperature of the planet if heated by star:

Energy absorbed per second:

Labs =
πR2

p

4πa2
(1− A)Ls =

πR2
p

4πa2
(1− A)4πR2

sσT
4
s

A is albedo, reflectivity. If A = 1, then a mirror.

In equilibrium, balance with emission:

Lem = 4πR2
pσT

4
p

or

Tp =

(
Rs

2a

)1/2

Ts(1− A)1/4

Can use this to get rough temperatures of the planets in the Solar System. Find that some (Earth,
Venus) are hotter than expected: greenhouse effect, traps thermal radiation.

For hot Jupiters, Tp ≈ 1000 K(0.1 AU/a)1/2, compare to 120 K for Jupiter. And we see these down
to a = 0.01 AU (Mercury is at 0.4 AU).
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XXVI.3.2 Composition

Get mass from RV, R from transit. Many are larger, less dense than Jupiter. See a factor of 4 in R
at the same M . Are they bloated by being hot? Doesn’t quite seem so. Maybe they just never had
a chance to shrink down?

XXVI.3.3 Detecting Atmospheres

Look at spectra taken during transit. The atmosphere will block certain spectral lines preferentially,
compared to just rock. So during transit see depth of e.g., Na absorption is higher.

XXVI.3.4 Migration

Why do we see hot Jupiters, when the gas giants in our system are so far out?

We think they have to form out past the frost line: where the equilibrium temperature is cold
enough for ices/volatiles to condense (≈ 150 K). Otherwise you will only get rocky planets.

Somehow they likely migrate inward. What process controls this? We do not know. There are a
few possibilities, such as interaction between multiple planets or a planet and a disk. But this is
hard to control: it cannot be too fast (the planet hits the star) or too slow.
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Lecture XXVII Gravitational Light Bending

This is one of the major predictions of GR. But we can do an approximate Newtonian version first.

Consider deflection of a massive particle m around a larger mass M . The “impact parameter” is b,
and the velocity at infinity is v. The particle is deflected by an angle α.

We work in the impulse approximation: α� 1, so the trajectory is almost entirely straight.

Look at how much momentum is transfered to the test mass:

∆p⊥ = GMm

∫ ∞
−∞

dt
b

(b2 + v2t2)3/2

While it looks messy, we can do this integral, and we find:

∆p⊥ =
2GMm

vb

So this is the change in the momentum of the particle perpendicular to its initial motion. The angle
of deflection is then just how this momentum compares to the momentum along the initial motion,
mv:

α =
∆p⊥
mv

=
2GM

v2b

Note that this is a useful result in its own right, and helps explain things like free-free radiation.

If we just take v → c, we get α = 2GM/c2b. But this is not correct in GR. The correct result is a
factor of 2 higher, α = 4GM/c2b = 2RSch/b. For instance, a light ray grazing the Sun is bent by
an angle of 10−5 rad or about 2′′.

Consider observer separated from lens by distance DL, and from source by DS .
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From the observer, the source is at the true position θS but it is seen at the image position θI . How
are these related? We have θI = θS + α′. So what is α′? Can use trigonometry plus small angle
approximation to show that α′ = α(DS−DL)/DS = (1−DL/DS)4GM/c2b = (1−x)4GM/c2b,
where x = DL/DS .

Or, we can also say:

b = bS + α′DL = bS + (1− x)
4GM

c2b
xDS

or

b = bS +
R2
E

b
with

R2
E =

4GM

c2
x(1− x)DS

is the Einstein Ring radius (squared). Solving this gives:

b =
1

2

(
bS ±

√
b2
S + 4R2

E

)
for a given bS . This means there are two images for the two solutions, one on each side. In the
case of bS = 0 (perfect alignment) then b = ±RE and we get a ring of images called an “Einstein
Ring.”

So this dealt with the shifting. What about the brightness? Intensity along a light ray is preserved,
so if we see more light rays we will see a brighter source. We can write it as:

A =

∣∣∣∣ b dbbS dbS

∣∣∣∣
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where A is the amplification, and the ratio is the image area compared to the initial source area.
Solving this:

A± =

∣∣∣∣ bbS
∣∣∣∣ 1

2

(
1± bS√

b2
S + 4R2

E

)
=

1

4

(
1±

√
1 +

4

u2

)∣∣∣∣∣∣1± 1√
1 + 4

u2

∣∣∣∣∣∣
with u = bS/RE . Simplifying more:

A± =

∣∣∣∣∣∣14
2± 2 + 4

u2√
1 + 4

u2

∣∣∣∣∣∣ =

∣∣∣∣12 ± 1

2

2 + u2

u
√
u2 + 4

∣∣∣∣
or:

A± =
u2 + 2

2u
√
u2 + 4

± 1

2

10-2 10-1 100 101

u= bS/RE

10-5

10-4

10-3

10-2

10-1

100

101

102

A
m

p
lif

ic
a
ti

o
n

A+

A−

We can look at three limits here:

• In the aligned case, u→ 0 andA± →∞. This would suggest we have infinite magnification,
but in reality the source is not infinitely small so there are parts that are mis-aligned.
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• In the mis-aligned case, u→∞ and A+ → 1 while A− → 0. So we can essentially see only
a single image with unity amplification, which is basically the normal non-lensed scenario.

• If u = 1, then A+ = 1.17 and A− = 0.17.

Overall, in order to see two images we want alignment to within ∼ RE .

How far apart are the two images?

θI =
b

DL

=
1

2DL

(
bS ±

√
b2
S + 4R2

E

)
So the difference is:

∆θI =
1

DL

√
b2
S + 4R2

E =
RE

DL

√
u2 + 4

and we mostly care about u . 1. This means that the separation will be

∆thetaI ≈ 2
RE

DL

= 2θE

where

θE =
RE

DL

=

√
4GM

c2

DS −DL

DSDL

= 0.9 mas

(
M

M�

)1/2(
10 kpc

DL

)1/2(
1− DL

DS

)1/2

So the typical separation is ∼ 1 mas, which is just about impossible to see with optical telescopes
as we discussed earlier. However, we can see the effect of the combined magnification:

A = A+ + A− =
u2 + 2

u
√
u2 + 4

which is always > 1.

What we are interested in here is the random lensing of a background star by some massive fore-
ground object. In that case the lens is moving relative to the line between the source and the
observer, with:

b2
S = b+

minv
2(t− t0)2

with v the transverse velocity. So we get:

u =

√
u2

min +

(
v

RE

)2

(t− t0)2 =

√
u2

min +

(
t− t0
∆tE

)2

with umin = bmin/RE and ∆tE = RE/v the “Einstein Ring Crossing Time:”

∆tE = 0.2 yr

(
200 km/s

v

)(
M

M�

)1/2(
10 kpc

DL

)1/2(
1− DL

DS

)1/2

which is the timescale over which u and A change. This ends up being the typical duration of a
lensing event.
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We see a characteristic lightcurve, where those with small umin have larger magnifications.

How can we tell that what we see is microlensing and not random stellar variability? Lensing
affects all wavelengths the same, which is rare.

What is the probability that a given star in the Galaxy is lensed with u < 1 at a given time? We
can write this in terms of a cross section or an optical depth:

τ =

∫ L

0

dxn(x)σ(x)

For the lensing problem, we can write a cross section like:

πR2
E = π

4GM

c2

DL(DS −DL)

DS

So:

τ =

∫ DS

0

dDL n(DL)
4πGM

c2

DL(DS −DL)

DS

=
4πG

c2
D2
S

∫ 1

0

dx ρ(x)x(1− x)

with ρ = Mn and x = DL/DS . So we can estimate what ρ is and figure this out. If ρ is constant,
then τ ∼ 2πGρD2

S/3c
2. If DS ∼ 50 kpc is the size of the Galactic halo which is the whole system

we are considering, then:

τ ∼ GMtotal

DSc2
∼ v2

c2

since by the Virial theorem, v2 ∼ GMtotal/DS . So for v ∼ 200 km/s, which is a typical speed for
stars in the Milky Way, we have τ ∼ 5 × 10−7 � 1. So we need to observe millions of stars to
find microlensing events, and we need to look every few weeks to see changes.

There are experiments that do this. Looking for MACHOs: possible dark matter consituent that
would be visible via microlensing even if it doesn’t emit itself. Overall microlensing is found, but
not nearly enough to account for dark matter (next semester).
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Lecture XXVIII Gravitational Waves

Conservation of mass implies that GW from mass monopole is 0 (same with conservation of elec-
tric charge in EM).

Conservation of momentum implies that GW from mass dipole is also 0. This isn’t the case with
EM. For GW we need to go to quadrupole for the lowest order radiation. Can show:

h ∼ G

c4d

d2Q

dt2

is the strain, where Q is the mass quadrupole moment. Strain is the gravitational wave amplitude.
Notice that this is h ∼ 1/d for the amplitude. This means that the energy flux goes as ∼ 1/d2,
which is good since that means it is conserved.

Can also work out luminosity of the waves:

LGW = −dE
dt

=
1

5
Gc5

(
d3Q

dt3

)2

We can say Q ∼ MR2 for a system with mass M and characteristic size R. The time derivatives
will then be d/dt ∼ 1/T , where T is a characteristic timescale of the system (such as orbital
timescale). R/T is also a velocity, so

d3Q

dt3
∼ MR2

T 3
∼ Mv2

T

The timescale can also be related to the dynamical timescale, T ∼ 1/
√
Gρ ∼

√
R3/GM . So we

can write:

LGW ∼
G

c5

(
M

R

)5

∼ G

c5

(
M

R

)2

v6 ∼ c5

G

(
RSch

R

)2 (v
c

)6

So we get a lot of energy out if the size is small compared to the Schwarzschild radius and the
velocity is large compared to c. At a maximum, we get LGW ∼ c5/G = 3.6 × 1052 W, which is
independent of mass. It is a huge luminosity, far greater than the EM luminosity we see.

We can also figure out the strain amplitude. Relate Mv2 ∼ Ens, which is the non-spherical part of
the kinetic energy, Ens = εE. We get:

h ∼ G

c4

εE

d

The factor ε is what fraction of the energy plays a part in emitting GWs. Combining the two, we
get:

h ≈ 10−22

(
EGW

10−4M�

)1/2(
f

1 kHz

)−1 ( τ

1 ms

)−1/2
(

d

15 Mpc

)−1

as the strain from an event at the Virgo cluster (15 Mpc distance) which has a frequency of f =
1 kHz, a duration of τ = 1 ms, and has 10−4M�c

2 of energy emitted as GWs.
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As a concrete example, if we have a binary system, then Q ∼Ma2. We get:

LGW =
8GM2a4Ω6

5c5
=

64GM5

5c5a5

where we have used Kepler’s Third Law Ω2 = GM/a3. This assumes things are circular, but if the
orbits are eccentric the luminosity is higher and the orbit will decay more quickly.
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