Star Formation

Orion Nebula

Where do stars form?

UV image (GALEX) Young stars are bluish-white Older stars gold

NASA

- Stars form in galactic disks
- Sun is a disk star
- Star formation concentrated in spiral arms

bulge of old stars, central black hole

Spitzer Space Telescope: Star formation in the M17 nebula

dust cloud with new star formation

NASA/JPL-Caltech/ M. Povich (Penn State Univ.)

Spitzer Space Telescope: Star formation in the M17 nebula

Visible (DSS) dust cloud with new star formation

NASA/JPL-Caltech/ M. Povich (Penn State Univ.)

How much raw material in the Milky Way?

- Milky Way is ~ 10^{10} years old, ~ 10^{12} M $_{\odot}$
 - Dark matter ~90% (~ $10^{12} M_{\odot}$)
 - Stars ~10% (~10¹¹ M $_{\odot}$ central black hole ~3 x 10⁶ M $_{\odot}$)
 - Interstellar medium ~1% (~10¹⁰ M_{\odot}, mostly gas, ~1% dust)
- Interstellar medium
 - not smooth: clouds and cavities
 - regions of very cold (~ 10K), cold (~100K), warm (10⁴ K) and very hot (~10⁶K)
 - affected by nearby stars (stellar winds, supernovae, outflows)
 - average interstellar medium number density ~10⁶ m⁻³
 - best vacuum on Earth: n~10⁹ m⁻³
 - of relevance to star formation: giant molecular clouds, Bok globules

Dark cloud Barnard 68 shows scattering of starlight

Stars form in dense, dusty gas

Giant molecular cloud	~50 pc	~10 ⁵ M⊙	~10 ⁸ m
Dense core of GMC	~1 pc	~100 M⊙	~10 ¹⁴ n
Bok globule	~1 рс	~10 M⊙	~10 ¹² n

NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Bok

NASA

Stars Form by Gravitational Collapse

- A necessary condition for gravitational collapse lacksquare
- The Jeans criterion (1877-1946)
- Stable, gravitationally bound system satisfies the virial theorem $E_{kin} + \frac{1}{2}E_{pot} = 0$
- The cloud will collapse only if $E_{kin} + \frac{1}{2}E_{pot} < 0$

$$E_{\text{pot}} = -\frac{3}{5} \frac{GM^2}{R} \qquad E_{\text{kin}} = \frac{3}{2} NkT = \frac{3}{2} \frac{M}{\mu m}$$
$$E_{\text{kin}} < -\frac{E_{\text{pot}}}{2} \longrightarrow \qquad M > M_J = \left(\frac{5kT}{G\mu m_H}\right)$$

 $\frac{M}{n_H}kT$

 $\frac{1}{2}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$

"Jeans mass"

Stars Form by Gravitational Collapse

Knowing the temperature and density of a cloud, we know the minimum mass it has to have in order to collapse under its own weight

 $M_J \propto T^{3/2} \rho^{-1/2}$

Diffuse hydrogen cloud, typically < 10² M⊙	T ~ 50 K	n ~ 5 x 10 ⁸ m ⁻³	Mj ~ 1500 M⊙
GMC dense core, typically 10² M⊙	T ~ 150 K	n ~ 10 ¹⁴ m ⁻³	Mj ~ 17 M⊙
Barnard 68 Dark cloud, ~ 3 M⊙	T ~ 10 K	n ~ 10 ¹² m ⁻³	Mj ~ 3 M⊙

Hotter → more pressure support → need more mass

Denser → need less mass

• Eagle Nebula in Orion

• Massive stars evaporate clouds in which low mass stars are forming

> NASA, ESA, STScl, J. Hester and P. Scowen (Arizona State University)

> > (STScI/AURA)

NASA, ESA, and The Hubble Heritage Team

OC

 \frown

Jean-Charles Cuillandre (CFHT), Hawaiian Starlight, CFHT

Horsehead Nebula in Orion

Dark molecular cloud silhouetted against bright nebula

Young, massive B star (strong UV source)

What happens during collapse?

- First stage: free-fall (dynamical timescale)
 - gravity overcomes the pressure support
 - nearly free-fall collapse, t ~ t_{dyn} ~ $(G\rho)^{-1/2}$ ~ 10^3 yr for dense core of GMC
 - center of the cloud higher density → collapse faster → central cusp
 - temperature of the cloud remains ~ constant (isothermal)
 - gravitational energy release is lost to the outside
 - this is possible as long as the cloud is still transparent to its own radiation
 - fragmentation occurs due to decreasing Jeans mass: $M_J \propto T^{3/2}
 ho^{-1/2}$

The Cygnus Wall of Star Formation

Credit & Copyright: Michael Sherick

se core of GMC entral cusp

to its own radiation $\propto T^{3/2} ho^{-1/2}$

Cloud fragmentation

 $M > M_J$

What happens during collapse?

- Second stage: pre-main-sequence (thermal timescale)
- further contraction, cloud becomes optically thick (heat not lost instantly)
- free-fall and fragmentation stop, contracts slowly as heat diffuses out
 - $t_{KH} \sim E/L \sim 10^7 \text{ yr for } 1 M_{\odot}$
 - longer or shorter for higher/lower mass stars?
 - strong stellar wind (~ $10^{-8} M_{\odot}/yr$)
 - high angular momentum material forms disk \bullet
 - viscosity in the disk moves material inward
 - jets, stellar UV photons and winds disperse disk/cloud

- Disk around a massive young star observed with European \bullet Southern Observatory Very Large Telescope Interferometer
- Massive stars form in the same way as less massive stars lacksquare

NASA/JPL-Caltech/2MASS/B. Whitney (SSI/University of Wisconsin)

Distant star forming region BG2107+49, 10 kpc away

Spitzer Space Telescope + 2MASS (Two Micron All Sky Survey)

Star formation triggers more star formation

Red dots = young, forming stars cocooned in gas and dust

- Survey)

NASA/JPL-Caltech/2MASS/B. Whitney (SSI/University of Wisconsin)

"Shocked outflows"

Gas outflow from a new star runs into the surrounding interstellar medium

Spitzer Space Telescope + 2MASS (Two Micron All Sky

- Spitzer Space Telescope: Star formation in the Orion nebula
- Radiation and wind from massive stars blows away gas and dust

NASA/JPL-Caltech/J. Stauffer (SSC/Caltech)

What happens during collapse?

- Third stage: main-sequence stars (nuclear timescale)
 - central temperature so hot that H burning starts, t ~ t_{nuc} ~ Mc^2/L

Distribution of stellar masses

- Star formation tends to form low mass stars
- Final stellar mass is not the initial $M_{\rm I}$
- Fragmentation
 - Isothermal collapse phase, T constant, ρ increases $\rightarrow M_{\rm J}$ decreases
 - An initially collapsing cloud can fragment \rightarrow lighter stars
 - Fragmentation stops when isothermal phase stops
- Angular momentum
 - d ~ 1 pc → d ~ 10⁻⁸ pc
 - forming binary stars, triple stars....
- **Observed:**
 - 20 times as many stars $< 1 M_{\odot}$ than $> 1 M_{\odot}$ (to 0.1 M_{\odot}) lacksquare
 - Average mass of a star ~ 0.3 M_{\odot}
 - Distribution of stellar masses is called the initial mass function (IMF)

Star formation in galaxies

- The Milky Way is forming stars at a rate of ~1 M_o/yr
- Each star takes ~10⁶ yr to mature to main sequence
- 10^{10} M_o of gas, turned into stars at ~1 M_o/yr, can last 10^{10} yrs
 - Star formation can last longer why?
- Some galaxies form stars at much higher rates, > 100 M_o/yr
 - "starburst galaxies"

NASA, ESA and the Hubble Heritage Team STScl/AURA). Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI) and P. Puxley (NSF)

starbursts triggered by galaxy-galaxy collisions

NASA, ESA, and the Hubble Heritage Team (STScl/ AURA)-ESA/Hubble Collaboration