Astron 300 Problem Set 10

Due: Wed Dec 8 at the beginning of class.

Homework Policy: You can consult class notes and books. Always try to solve the problems yourself; if you cannot make progress after some effort, you can discuss with your classmates or ask the instructor. However, you cannot copy other's work: what you turn in must be your own. Make sure you are clear about the process you use to solve the problems: partial credit will be awarded. **Reading:** Carroll & Ostlie, Chapters 23, 6

Problem 1 Accretion of planetesimals onto a proto-Earth

The figure below illustrates the trajectory of a planetesimal (rock of negligible mass and size) as it passes near a massive object (say, a proto-earth, of mass M and radius R). We are interested in the accretion cross-section for the latter object, and how its rate of growth depends on its mass.

- a. We first consider the trajectory. Let the velocity of the rock relative to the proto Earth at infinity be v_{∞} and the impact parameter (the separation between its initial trajectory and a parallel line through the center of the proto-earth) be b. Gravity bends the trajectory producing a closest approach a (a < b). Obtain a as a function of b, M and v_{∞} . (Hint: assume that the motion of the rock is only affected by the gravity of the proto-Earth, and use the fact that the rocks total energy and angular momentum are conserved.)
- b. The accretion cross-section $\sigma = \pi b^2$ is enhanced over the geometrical crosssection (πR^2) because of the gravitational focusing.
 - (b.1) Set a = R and derive σ . Write your results in terms of R, mean planet density ρ , and v_{∞} .
 - (b.2) How large does the planet have to be for gravitational focusing to become significant? In other words, find the size $R = R_{\rm crit}$ (in terms of v_{∞} and ρ) for which σ is enhanced over the geometrical value by a factor of two.
 - (b.3) Calculate $R_{\rm crit}$ for $\rho = \rho_{\oplus} \approx 5.5 \times 10^3 \,\rm kg \, m^{-3}$ and $v_{\infty} = 1 \,\rm km \, s^{-1}$ (a small fraction of the Keplerian velocity at 1 AU).
- c. The proto-earth grows in mass by accreting planetesimals, at a rate \dot{M} proportional to σ .

- (c.1) Write down σ in terms of ρ and M for the case that $R \gg R_{\rm crit}$.
- (c.2) Show that the time needed for a proto-planet to accrete its own mass, $t_{\rm acc} = M/\dot{M}$, scales as $M^{-1/3}$. (Thus, more massive objects grow faster; the 'rich get richer' scenario in planet formation.)

Problem 2 Radioactive Dating

Radio-active rhenium (¹⁸⁷Re) decays with a half-life $\tau_{1/2} = 4.6 \times 10^{10}$ yr. The abundance for the decay product osmium (¹⁸⁷Os) rises accordingly so as to conserve the total number of nuclei of ¹⁸⁷Re and ¹⁸⁷Os. The abundances of these two elements are measured against the abundance of ¹⁸⁸Os, an isotope of Os which is not involved in any decaying process.

a. Show that the following equation is true:

$$\frac{N_{187\text{Os}}(t)}{N_{188\text{Os}}} = (e^{\lambda t} - 1)\frac{N_{\text{Re}}(t)}{N_{188\text{Os}}} + \frac{N_{187\text{Os}}(0)}{N_{188\text{Os}}}$$

where $N_{\rm X}(y)$ is the number of nuclei of the element X at time y (1880s for ¹⁸⁸Os, etc.), and $\lambda \equiv \ln 2/\tau_{1/2}$.

- b. When a rock solidifies (from molten or vaporous forms), all elements are locked in, with initial ratios $N_{187\text{Os}}(0)/N_{188\text{Os}}$ and $N_{187\text{Os}}(0)/N_{\text{Re}}(0)$. Since different isotopes of the same element do not have different chemical behavior, different minerals in the same piece of rock likely have the same $N_{187\text{Os}}(0)/N_{188\text{Os}}$ value but differ in their $N_{187\text{Os}}(0)/N_{\text{Re}}(0)$ values due to their different chemical compositions. At the present day, one can measure $N_{187\text{Os}}(t)/N_{188\text{Os}}$ and $N_{\text{Re}}(t)/N_{188\text{Os}}$ for different minerals in the same rock. Show that $Y = N_{187\text{Os}}(t)/N_{188\text{Os}}$ should depend linearly on $X = N_{\text{Re}}(t)/N_{188\text{Os}}$, with Y = aX + b, and write the values of a and b in terms of the other variables.
- c. The table below lists a string of measurements for X and Y (taken from Planetary Sciences, de Pater & Lissauer). Use these to determine what is the initial abundance of $N_{1870s}(0)/N_{1880s}$, and how long ago the rock solidified. (Note:

surements all have similar uncertainty.)	
$X = N_{\rm Re}(t)/N_{\rm 188Os}$	$Y = N_{187Os}(t)/N_{188Os}$
0.669	0.148
0.664	0.148
0.604	0.143
0.484	0.133
0.512	0.136
0.537	0.138
0.414	0.128
0.369	0.124

either use a least-square solver or use a graph to determine a and b. The measurements all have similar uncertainty.)

- Problem 3 Carroll & Ostlie 6.7
- Problem 4 Carroll & Ostlie 6.8
- Problem 5 Carroll & Ostlie 6.12